A Generative Model Enhanced Multi-Agent Reinforcement Learning Method for Electric Vehicle Charging Navigation
- URL: http://arxiv.org/abs/2502.20068v1
- Date: Thu, 27 Feb 2025 13:24:51 GMT
- Title: A Generative Model Enhanced Multi-Agent Reinforcement Learning Method for Electric Vehicle Charging Navigation
- Authors: Tianyang Qi, Shibo Chen, Jun Zhang,
- Abstract summary: We introduce a novel generative model-enhanced multi-agent DRL algorithm that utilizes only the EV's local information.<n> Experimental results show that our proposed algorithm, which relies on local information, outperforms existing local information-based methods.
- Score: 6.326967507936191
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread adoption of electric vehicles (EVs), navigating for EV drivers to select a cost-effective charging station has become an important yet challenging issue due to dynamic traffic conditions, fluctuating electricity prices, and potential competition from other EVs. The state-of-the-art deep reinforcement learning (DRL) algorithms for solving this task still require global information about all EVs at the execution stage, which not only increases communication costs but also raises privacy issues among EV drivers. To overcome these drawbacks, we introduce a novel generative model-enhanced multi-agent DRL algorithm that utilizes only the EV's local information while achieving performance comparable to these state-of-the-art algorithms. Specifically, the policy network is implemented on the EV side, and a Conditional Variational Autoencoder-Long Short Term Memory (CVAE-LSTM)-based recommendation model is developed to provide recommendation information. Furthermore, a novel future charging competition encoder is designed to effectively compress global information, enhancing training performance. The multi-gradient descent algorithm (MGDA) is also utilized to adaptively balance the weight between the two parts of the training objective, resulting in a more stable training process. Simulations are conducted based on a practical area in Xi\'an, China. Experimental results show that our proposed algorithm, which relies on local information, outperforms existing local information-based methods and achieves less than 8\% performance loss compared to global information-based methods.
Related papers
- Optimizing Electric Vehicles Charging using Large Language Models and Graph Neural Networks [0.0]
Traditional optimization methods and Reinforcement Learning approaches often struggle with the high dimensionality and dynamic nature of real-time EV charging.<n>This study demonstrates that combining Large Language Models (LLMs), for sequence modeling, with Graph Neural Networks (GNNs) for relational information extraction, outperforms conventional EV smart charging methods.
arXiv Detail & Related papers (2025-02-05T11:00:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
The low-altitude economy (LAE), driven by unmanned aerial vehicles (UAVs) and other aircraft, has revolutionized fields such as transportation, agriculture, and environmental monitoring.<n>In the upcoming six-generation (6G) era, UAV-assisted mobile edge computing (MEC) is particularly crucial in challenging environments such as mountainous or disaster-stricken areas.<n>The task offloading problem is one of the key issues in UAV-assisted MEC, primarily addressing the trade-off between minimizing the task delay and the energy consumption of the UAV.
arXiv Detail & Related papers (2025-01-11T02:32:42Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.<n>Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - Safety-Aware Reinforcement Learning for Electric Vehicle Charging Station Management in Distribution Network [4.842172685255376]
Electric vehicles (EVs) pose a significant risk to the distribution system operation in the absence of coordination.
This paper presents a safety-aware reinforcement learning (RL) algorithm designed to manage EV charging stations.
Our proposed algorithm does not rely on explicit penalties for constraint violations, eliminating the need for penalty tuning coefficient.
arXiv Detail & Related papers (2024-03-20T01:57:38Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
Open Radio Access Network systems, with their base stations (vBSs), offer operators the benefits of increased flexibility, reduced costs, vendor diversity, and interoperability.<n>We propose an online learning algorithm that balances the effective throughput and vBS energy consumption, even under unforeseeable and "challenging'' environments.<n>We prove the proposed solutions achieve sub-linear regret, providing zero average optimality gap even in challenging environments.
arXiv Detail & Related papers (2023-09-04T17:30:21Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
Electric vehicles (EVs) might stress distribution networks significantly, leaving their performance degraded and jeopardized stability.
Modern power grids require coordinated or smart'' charging strategies capable of optimizing EV charging scheduling in a scalable and efficient fashion.
We formulate a time-coupled binary optimization problem that maximizes EV users' total welfare gain while accounting for the network's available power capacity and stations' occupancy limits.
arXiv Detail & Related papers (2023-05-18T14:03:47Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
arXiv Detail & Related papers (2022-06-07T11:10:38Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Safe Model-based Off-policy Reinforcement Learning for Eco-Driving in
Connected and Automated Hybrid Electric Vehicles [3.5259944260228977]
This work proposes a Safe Off-policy Model-Based Reinforcement Learning algorithm for the eco-driving problem.
The proposed algorithm leads to a policy with a higher average speed and a better fuel economy compared to the model-free agent.
arXiv Detail & Related papers (2021-05-25T03:41:29Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.