A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem
- URL: http://arxiv.org/abs/2206.03185v1
- Date: Tue, 7 Jun 2022 11:10:38 GMT
- Title: A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem
- Authors: Erick Rodr\'iguez-Esparza, Antonio D Masegosa, Diego Oliva, Enrique
Onieva
- Abstract summary: Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
- Score: 9.655068751758952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electric vehicles (EVs) have been adopted in urban areas to reduce
environmental pollution and global warming as a result of the increasing number
of freight vehicles. However, there are still deficiencies in routing the
trajectories of last-mile logistics that continue to impact social and economic
sustainability. For that reason, in this paper, a hyper-heuristic (HH) approach
called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning
(HHASA$_{RL}$) is proposed. It is composed of a multi-armed bandit method and
the self-adaptive Simulated Annealing (SA) metaheuristic algorithm for solving
the problem called Capacitated Electric Vehicle Routing Problem (CEVRP). Due to
the limited number of charging stations and the travel range of EVs, the EVs
must require battery recharging moments in advance and reduce travel times and
costs. The HH implemented improves multiple minimum best-known solutions and
obtains the best mean values for some high-dimensional instances for the
proposed benchmark for the IEEE WCCI2020 competition.
Related papers
- Electric Vehicles coordination for grid balancing using multi-objective
Harris Hawks Optimization [0.0]
The rise of renewables coincides with the shift towards Electrical Vehicles (EVs) posing technical and operational challenges for the energy balance of the local grid.
Coordinating power flow from multiple EVs into the grid requires sophisticated algorithms and load-balancing strategies.
This paper proposes an EVs fleet coordination model for the day ahead aiming to ensure a reliable energy supply and maintain a stable local grid.
arXiv Detail & Related papers (2023-11-24T15:50:37Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning [6.851787321368938]
The shift towards electrifying transportation aims to curb environmental concerns related to fossil fuel consumption.
The evolution of energy management systems (EMS) from HEVs to connected hybrid electric vehicles (CHEVs) represent a pivotal shift.
This review bridges the gap, highlighting challenges, advancements, and potential contributions of RL-based solutions for future sustainable transportation systems.
arXiv Detail & Related papers (2023-08-28T14:12:52Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
We present QuikRouteFinder that uses reinforcement learning (RL) for EV routing to overcome these challenges.
Results from RL are compared against exact formulations based on mixed-integer linear program (MILP) and genetic algorithm (GA) metaheuristics.
arXiv Detail & Related papers (2022-04-12T06:13:06Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Cautious Adaptation For Reinforcement Learning in Safety-Critical
Settings [129.80279257258098]
Reinforcement learning (RL) in real-world safety-critical target settings like urban driving is hazardous.
We propose a "safety-critical adaptation" task setting: an agent first trains in non-safety-critical "source" environments.
We propose a solution approach, CARL, that builds on the intuition that prior experience in diverse environments equips an agent to estimate risk.
arXiv Detail & Related papers (2020-08-15T01:40:59Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
arXiv Detail & Related papers (2020-08-07T18:45:26Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.