論文の概要: Discovering Antagonists in Networks of Systems: Robot Deployment
- arxiv url: http://arxiv.org/abs/2502.20125v1
- Date: Thu, 27 Feb 2025 14:16:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:55:35.528818
- Title: Discovering Antagonists in Networks of Systems: Robot Deployment
- Title(参考訳): システムネットワークにおけるアンタゴニストの発見:ロボットの展開
- Authors: Ingeborg Wenger, Peter Eberhard, Henrik Ebel,
- Abstract要約: カバータスクを実行するロボット群における身体動作に対して,文脈異常検出法を提案し,適用した。
スウォームの正常な動作のシミュレーションを用いて、ロボットの動きの可能性を予測するために正規化フローを訓練する。
適用中、観測された動作の予測可能性は、ロボットエージェントを通常的または対角的と分類する検出基準によって使用される。
- 参考スコア(独自算出の注目度): 0.6554326244334868
- License:
- Abstract: A contextual anomaly detection method is proposed and applied to the physical motions of a robot swarm executing a coverage task. Using simulations of a swarm's normal behavior, a normalizing flow is trained to predict the likelihood of a robot motion within the current context of its environment. During application, the predicted likelihood of the observed motions is used by a detection criterion that categorizes a robot agent as normal or antagonistic. The proposed method is evaluated on five different strategies of antagonistic behavior. Importantly, only readily available simulated data of normal robot behavior is used for training such that the nature of the anomalies need not be known beforehand. The best detection criterion correctly categorizes at least 80% of each antagonistic type while maintaining a false positive rate of less than 5% for normal robot agents. Additionally, the method is validated in hardware experiments, yielding results similar to the simulated scenarios. Compared to the state-of-the-art approach, both the predictive performance of the normalizing flow and the robustness of the detection criterion are increased.
- Abstract(参考訳): カバータスクを実行するロボット群における身体動作に対して,文脈異常検出法を提案し,適用した。
スウォームの正常な振る舞いのシミュレーションを用いて、その環境の現在の状況の中でロボットの動きの可能性を予測するために正規化フローを訓練する。
適用中、観測された動作の予測可能性は、ロボットエージェントを通常的または対角的と分類する検出基準によって使用される。
提案手法は, 対角的行動の5つの異なる戦略に基づいて評価する。
重要なことは、通常のロボット動作のシミュレーションデータのみが、前もって異常の性質を知る必要がなくなるように訓練に使用されることである。
最良の検出基準は、通常のロボットエージェントに対して5%未満の偽陽性率を維持しながら、各敵対型の少なくとも80%を正しく分類する。
さらに、本手法はハードウェア実験で検証され、シミュレーションされたシナリオと同様の結果が得られる。
現状のアプローチと比較して、正規化フローの予測性能と検出基準の堅牢性の両方が向上する。
関連論文リスト
- Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
シミュレーションにおけるビジュモータポリシーの学習は、現実世界よりも安全で安価である。
しかし、シミュレーションデータと実データとの相違により、シミュレータ訓練されたポリシーは実際のロボットに転送されると失敗することが多い。
視覚的なsim-to-real領域ギャップを埋める一般的なアプローチは、ドメインランダム化(DR)である。
論文 参考訳(メタデータ) (2023-07-28T05:47:24Z) - Proactive Anomaly Detection for Robot Navigation with Multi-Sensor
Fusion [7.293053431456775]
移動ロボットは異常な動作を生成し、ナビゲーション障害を引き起こす。
反応異常検出法は、現在のロボットの状態に基づいて異常なタスク実行を識別する。
本研究では,非構造的かつ不確実な環境下でのロボットナビゲーションのための能動的異常検出ネットワーク(PAAD)を提案する。
論文 参考訳(メタデータ) (2022-04-03T19:48:40Z) - Using Visual Anomaly Detection for Task Execution Monitoring [19.93687052022601]
我々は,カメラやロボットの身体の動きを含むタスクの実行中に発生する動作を予測することを学ぶ。
確率的U-Netアーキテクチャは光学フローを予測するために使用され、ロボットのキネマティクスと3Dモデルはカメラと体の動きをモデル化するために使用される。
論文 参考訳(メタデータ) (2021-07-29T17:46:23Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
本稿では,人間の動作予測のための確率モデルを提案する。
我々のモデルは、観測された動きシーケンスが与えられたときに、いくつかの将来の動きを生成することができる。
我々は、大規模ベンチマークデータセットHuman3.6mに対して、我々のアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2021-07-14T09:05:33Z) - Using a Neural Network to Detect Anomalies given an N-gram Profile [0.0]
異常検出は、コンピュータプログラムの通常の実行動作をプロファイルするように設計されている。
正常だが観察できない行動は偽陽性を引き起こす可能性がある。
本稿では,ニューラルネットワークを用いた異常の存在を説明する方法について述べる。
論文 参考訳(メタデータ) (2021-04-12T15:40:43Z) - Adversarial Training is Not Ready for Robot Learning [55.493354071227174]
対人訓練は,ノルム有界摂動に耐性のあるディープラーニングモデルを訓練する有効な方法である。
敵訓練により得られたニューラルコントローラが3種類の欠陥を受けることを理論的および実験的に示す。
この結果から, ロボット学習にはまだ対応できていないことが示唆された。
論文 参考訳(メタデータ) (2021-03-15T07:51:31Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Predictive Modeling of Periodic Behavior for Human-Robot Symbiotic
Walking [13.68799310875662]
我々は、インタラクションプリミティブを周期的な運動体制、すなわち歩行に拡張する。
このモデルは、人間の歩行の、データ駆動でカスタマイズされたモデルを学ぶのに特に適していることを示す。
また,ロボット義肢のコントローラーの学習にも,同じフレームワークが利用できることを示す。
論文 参考訳(メタデータ) (2020-05-27T03:30:48Z) - Learning Compliance Adaptation in Contact-Rich Manipulation [81.40695846555955]
本稿では,コンタクトリッチタスクに必要な力プロファイルの予測モデルを学習するための新しいアプローチを提案する。
このアプローチは、双方向Gated Recurrent Units (Bi-GRU) に基づく異常検出と適応力/インピーダンス制御を組み合わせたものである。
論文 参考訳(メタデータ) (2020-05-01T05:23:34Z) - Sequential Anomaly Detection using Inverse Reinforcement Learning [23.554584457413483]
逆強化学習(IRL)を用いた逐次異常検出のためのエンドツーエンドフレームワークを提案する。
我々はニューラルネットワークを用いて報酬関数を表現し、学習された報酬関数を用いて、ターゲットエージェントからの新しい観察が正常なパターンに従うかどうかを評価する。
公開されている実世界のデータに関する実証研究は,本手法が異常の同定に有効であることを示している。
論文 参考訳(メタデータ) (2020-04-22T05:17:36Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
ビデオ異常検出に自己学習深層順序回帰を適用することで,既存の手法の2つの重要な限界を克服できることを示す。
我々は,手動で正規/異常データをラベル付けすることなく,共同表現学習と異常スコアリングを可能にする,エンドツーエンドのトレーニング可能なビデオ異常検出手法を考案した。
論文 参考訳(メタデータ) (2020-03-15T08:44:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。