Concept Bottleneck Model with Additional Unsupervised Concepts
- URL: http://arxiv.org/abs/2202.01459v1
- Date: Thu, 3 Feb 2022 08:30:51 GMT
- Title: Concept Bottleneck Model with Additional Unsupervised Concepts
- Authors: Yoshihide Sawada, Keigo Nakamura
- Abstract summary: We propose a novel interpretable model based on the concept bottleneck model (CBM)
CBM uses concept labels to train an intermediate layer as the additional visible layer.
By seamlessly training these two types of concepts while reducing the amount of computation, we can obtain both supervised and unsupervised concepts simultaneously.
- Score: 0.5939410304994348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing demands for accountability, interpretability is becoming
an essential capability for real-world AI applications. However, most methods
utilize post-hoc approaches rather than training the interpretable model. In
this article, we propose a novel interpretable model based on the concept
bottleneck model (CBM). CBM uses concept labels to train an intermediate layer
as the additional visible layer. However, because the number of concept labels
restricts the dimension of this layer, it is difficult to obtain high accuracy
with a small number of labels. To address this issue, we integrate supervised
concepts with unsupervised ones trained with self-explaining neural networks
(SENNs). By seamlessly training these two types of concepts while reducing the
amount of computation, we can obtain both supervised and unsupervised concepts
simultaneously, even for large-sized images. We refer to the proposed model as
the concept bottleneck model with additional unsupervised concepts (CBM-AUC).
We experimentally confirmed that the proposed model outperformed CBM and SENN.
We also visualized the saliency map of each concept and confirmed that it was
consistent with the semantic meanings.
Related papers
- How to Continually Adapt Text-to-Image Diffusion Models for Flexible Customization? [91.49559116493414]
We propose a novel Concept-Incremental text-to-image Diffusion Model (CIDM)
It can resolve catastrophic forgetting and concept neglect to learn new customization tasks in a concept-incremental manner.
Experiments validate that our CIDM surpasses existing custom diffusion models.
arXiv Detail & Related papers (2024-10-23T06:47:29Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Concept Bottleneck Models Without Predefined Concepts [26.156636891713745]
We introduce an input-dependent concept selection mechanism that ensures only a small subset of concepts is used across all classes.
We show that our approach improves downstream performance and narrows the performance gap to black-box models.
arXiv Detail & Related papers (2024-07-04T13:34:50Z) - Improving Concept Alignment in Vision-Language Concept Bottleneck Models [9.228586820098723]
Concept Bottleneck Models (CBM) map images to human-interpretable concepts before making class predictions.
Recent approaches automate CBM construction by prompting Large Language Models (LLMs) to generate text concepts.
It is desired to build CBMs with concepts defined by human experts rather than LLM-generated ones.
arXiv Detail & Related papers (2024-05-03T03:02:00Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Sparse Concept Bottleneck Models: Gumbel Tricks in Contrastive Learning [86.15009879251386]
We propose a novel architecture and method of explainable classification with Concept Bottleneck Models (CBM)
CBMs require an additional set of concepts to leverage.
We show a significant increase in accuracy using sparse hidden layers in CLIP-based bottleneck models.
arXiv Detail & Related papers (2024-04-04T09:43:43Z) - Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable? [8.391254800873599]
We introduce a method to perform concept-based interventions on pretrained neural networks, which are not interpretable by design.
We formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes.
arXiv Detail & Related papers (2024-01-24T16:02:14Z) - Auxiliary Losses for Learning Generalizable Concept-based Models [5.4066453042367435]
Concept Bottleneck Models (CBMs) have gained popularity since their introduction.
CBMs essentially limit the latent space of a model to human-understandable high-level concepts.
We propose cooperative-Concept Bottleneck Model (coop-CBM) to overcome the performance trade-off.
arXiv Detail & Related papers (2023-11-18T15:50:07Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Coarse-to-Fine Concept Bottleneck Models [9.910980079138206]
This work targets ante hoc interpretability, and specifically Concept Bottleneck Models (CBMs)
Our goal is to design a framework that admits a highly interpretable decision making process with respect to human understandable concepts, on two levels of granularity.
Within this framework, concept information does not solely rely on the similarity between the whole image and general unstructured concepts; instead, we introduce the notion of concept hierarchy to uncover and exploit more granular concept information residing in patch-specific regions of the image scene.
arXiv Detail & Related papers (2023-10-03T14:57:31Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.