Cutting-edge 3D reconstruction solutions for underwater coral reef images: A review and comparison
- URL: http://arxiv.org/abs/2502.20154v1
- Date: Thu, 27 Feb 2025 14:53:15 GMT
- Title: Cutting-edge 3D reconstruction solutions for underwater coral reef images: A review and comparison
- Authors: Jiageng Zhong, Ming Li, Armin Gruen, Konrad Schindler, Xuan Liao, Qinghua Guo,
- Abstract summary: Photogrammetry-based approaches stand out among existing solutions.<n>There remains a lack of systematic reviews of cutting-edge solutions specifically applied to underwater coral reef images.<n>This paper focuses on the two critical stages of these approaches: camera pose estimation and dense surface reconstruction.
- Score: 19.711398917623438
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Corals serve as the foundational habitat-building organisms within reef ecosystems, constructing extensive structures that extend over vast distances. However, their inherent fragility and vulnerability to various threats render them susceptible to significant damage and destruction. The application of advanced 3D reconstruction technologies for high-quality modeling is crucial for preserving them. These technologies help scientists to accurately document and monitor the state of coral reefs, including their structure, species distribution and changes over time. Photogrammetry-based approaches stand out among existing solutions, especially with recent advancements in underwater videography, photogrammetric computer vision, and machine learning. Despite continuous progress in image-based 3D reconstruction techniques, there remains a lack of systematic reviews and comprehensive evaluations of cutting-edge solutions specifically applied to underwater coral reef images. The emerging advanced methods may have difficulty coping with underwater imaging environments, complex coral structures, and computational resource constraints. They need to be reviewed and evaluated to bridge the gap between many cutting-edge technical studies and practical applications. This paper focuses on the two critical stages of these approaches: camera pose estimation and dense surface reconstruction. We systematically review and summarize classical and emerging methods, conducting comprehensive evaluations through real-world and simulated datasets. Based on our findings, we offer reference recommendations and discuss the development potential and challenges of existing approaches in depth. This work equips scientists and managers with a technical foundation and practical guidance for processing underwater coral reef images for 3D reconstruction....
Related papers
- Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.
This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Underwater Image Enhancement using Generative Adversarial Networks: A Survey [1.2582887633807602]
Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos.<n>GANs have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation.<n>This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to CNN-based models and state-of-the-art GAN-based methods.
arXiv Detail & Related papers (2025-01-10T06:41:19Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
This paper presents a new paradigm for mapping underwater environments from ego-motion video.
We show high-precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs.
Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects.
arXiv Detail & Related papers (2023-09-22T11:35:10Z) - Seafloor-Invariant Caustics Removal from Underwater Imagery [0.0]
Caustics are complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface.
In this work, we propose a novel method for correcting the effects of caustics on shallow underwater imagery.
In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics"
arXiv Detail & Related papers (2022-12-20T11:11:02Z) - Combining Photogrammetric Computer Vision and Semantic Segmentation for
Fine-grained Understanding of Coral Reef Growth under Climate Change [6.335630432207172]
Corals are the primary habitat-building life-form on reefs that support a quarter of the species in the ocean.
For the first time, 3D fine-grained semantic modeling and rugosity evaluation of coral reefs have been completed at millimeter (mm) accuracy.
arXiv Detail & Related papers (2022-12-08T08:09:57Z) - 6D Camera Relocalization in Visually Ambiguous Extreme Environments [79.68352435957266]
We propose a novel method to reliably estimate the pose of a camera given a sequence of images acquired in extreme environments such as deep seas or extraterrestrial terrains.
Our method achieves comparable performance with state-of-the-art methods on the indoor benchmark (7-Scenes dataset) using only 20% training data.
arXiv Detail & Related papers (2022-07-13T16:40:02Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Adversarial Domain Feature Adaptation for Bronchoscopic Depth Estimation [111.89519571205778]
In this work, we propose an alternative domain-adaptive approach to depth estimation.
Our novel two-step structure first trains a depth estimation network with labeled synthetic images in a supervised manner.
The results of our experiments show that the proposed method improves the network's performance on real images by a considerable margin.
arXiv Detail & Related papers (2021-09-24T08:11:34Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Generating Physically-Consistent Satellite Imagery for Climate Visualizations [53.61991820941501]
We train a generative adversarial network to create synthetic satellite imagery of future flooding and reforestation events.
A pure deep learning-based model can generate flood visualizations but hallucinates floods at locations that were not susceptible to flooding.
We publish our code and dataset for segmentation guided image-to-image translation in Earth observation.
arXiv Detail & Related papers (2021-04-10T15:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.