Combining Photogrammetric Computer Vision and Semantic Segmentation for
Fine-grained Understanding of Coral Reef Growth under Climate Change
- URL: http://arxiv.org/abs/2212.04132v1
- Date: Thu, 8 Dec 2022 08:09:57 GMT
- Title: Combining Photogrammetric Computer Vision and Semantic Segmentation for
Fine-grained Understanding of Coral Reef Growth under Climate Change
- Authors: Jiageng Zhong, Ming Li, Hanqi Zhang, Jiangying Qin
- Abstract summary: Corals are the primary habitat-building life-form on reefs that support a quarter of the species in the ocean.
For the first time, 3D fine-grained semantic modeling and rugosity evaluation of coral reefs have been completed at millimeter (mm) accuracy.
- Score: 6.335630432207172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Corals are the primary habitat-building life-form on reefs that support a
quarter of the species in the ocean. A coral reef ecosystem usually consists of
reefs, each of which is like a tall building in any city. These reef-building
corals secrete hard calcareous exoskeletons that give them structural rigidity,
and are also a prerequisite for our accurate 3D modeling and semantic mapping
using advanced photogrammetric computer vision and machine learning. Underwater
videography as a modern underwater remote sensing tool is a high-resolution
coral habitat survey and mapping technique. In this paper, detailed 3D mesh
models, digital surface models and orthophotos of the coral habitat are
generated from the collected coral images and underwater control points.
Meanwhile, a novel pixel-wise semantic segmentation approach of orthophotos is
performed by advanced deep learning. Finally, the semantic map is mapped into
3D space. For the first time, 3D fine-grained semantic modeling and rugosity
evaluation of coral reefs have been completed at millimeter (mm) accuracy. This
provides a new and powerful method for understanding the processes and
characteristics of coral reef change at high spatial and temporal resolution
under climate change.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - TriHuman : A Real-time and Controllable Tri-plane Representation for
Detailed Human Geometry and Appearance Synthesis [76.73338151115253]
TriHuman is a novel human-tailored, deformable, and efficient tri-plane representation.
We non-rigidly warp global ray samples into our undeformed tri-plane texture space.
We show how such a tri-plane feature representation can be conditioned on the skeletal motion to account for dynamic appearance and geometry changes.
arXiv Detail & Related papers (2023-12-08T16:40:38Z) - BenthIQ: a Transformer-Based Benthic Classification Model for Coral
Restoration [4.931399476945033]
Coral reefs are vital for marine biodiversity, coastal protection, and supporting human livelihoods globally.
Current methods for creating benthic composition maps often compromise between spatial coverage and resolution.
We introduce BenthIQ, a multi-label semantic segmentation network designed for high-precision classification of underwater substrates.
arXiv Detail & Related papers (2023-11-22T19:25:31Z) - Ghost on the Shell: An Expressive Representation of General 3D Shapes [97.76840585617907]
Meshes are appealing since they enable fast physics-based rendering with realistic material and lighting.
Recent work on reconstructing and statistically modeling 3D shapes has critiqued meshes as being topologically inflexible.
We parameterize open surfaces by defining a manifold signed distance field on watertight surfaces.
G-Shell achieves state-of-the-art performance on non-watertight mesh reconstruction and generation tasks.
arXiv Detail & Related papers (2023-10-23T17:59:52Z) - Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning [4.8902950939676675]
This paper presents a new paradigm for mapping underwater environments from ego-motion video.
We show high-precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs.
Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects.
arXiv Detail & Related papers (2023-09-22T11:35:10Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
This study utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API.
The method employed in this research involves the use of machine learning models, particularly convolutional neural networks (CNN)
It was found that a from-scratch ResNet model can outperform pretrained models in terms of precision and accuracy.
arXiv Detail & Related papers (2023-08-08T15:30:08Z) - Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in
Coral Reefs with Vision-Guided Autonomous Underwater Vehicles [6.658103076536836]
Biological hotspot detection can help coral reef managers prioritize limited resources for monitoring and intervention tasks.
Here, we explore the use of autonomous underwater vehicles (AUVs) with cameras, coupled with visual detectors and photogrammetry, to map and identify these hotspots.
To the best of our knowledge, we present one of the first attempts at using an AUV to gather visually-observed, fine-grain biological hotspot maps.
arXiv Detail & Related papers (2023-05-03T16:12:47Z) - Seafloor-Invariant Caustics Removal from Underwater Imagery [0.0]
Caustics are complex physical phenomena resulting from the projection of light rays being refracted by the wavy surface.
In this work, we propose a novel method for correcting the effects of caustics on shallow underwater imagery.
In particular, the developed method employs deep learning architectures in order to classify image pixels to "non-caustics" and "caustics"
arXiv Detail & Related papers (2022-12-20T11:11:02Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Deep learning for lithological classification of carbonate rock micro-CT
images [52.77024349608834]
This work intends to present an application of deep learning techniques to identify patterns in Brazilian pre-salt carbonate rock microtomographic images.
Four convolutional neural network models were proposed.
According to accuracy, Model 2 trained on resized images achieved the best results, reaching an average of 75.54% for the first evaluation approach and an average of 81.33% for the second.
arXiv Detail & Related papers (2020-07-30T19:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.