Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning
- URL: http://arxiv.org/abs/2309.12804v1
- Date: Fri, 22 Sep 2023 11:35:10 GMT
- Title: Scalable Semantic 3D Mapping of Coral Reefs with Deep Learning
- Authors: Jonathan Sauder, Guilhem Banc-Prandi, Anders Meibom, Devis Tuia
- Abstract summary: This paper presents a new paradigm for mapping underwater environments from ego-motion video.
We show high-precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs.
Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects.
- Score: 4.8902950939676675
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coral reefs are among the most diverse ecosystems on our planet, and are
depended on by hundreds of millions of people. Unfortunately, most coral reefs
are existentially threatened by global climate change and local anthropogenic
pressures. To better understand the dynamics underlying deterioration of reefs,
monitoring at high spatial and temporal resolution is key. However,
conventional monitoring methods for quantifying coral cover and species
abundance are limited in scale due to the extensive manual labor required.
Although computer vision tools have been employed to aid in this process, in
particular SfM photogrammetry for 3D mapping and deep neural networks for image
segmentation, analysis of the data products creates a bottleneck, effectively
limiting their scalability. This paper presents a new paradigm for mapping
underwater environments from ego-motion video, unifying 3D mapping systems that
use machine learning to adapt to challenging conditions under water, combined
with a modern approach for semantic segmentation of images. The method is
exemplified on coral reefs in the northern Gulf of Aqaba, Red Sea,
demonstrating high-precision 3D semantic mapping at unprecedented scale with
significantly reduced required labor costs: a 100 m video transect acquired
within 5 minutes of diving with a cheap consumer-grade camera can be fully
automatically analyzed within 5 minutes. Our approach significantly scales up
coral reef monitoring by taking a leap towards fully automatic analysis of
video transects. The method democratizes coral reef transects by reducing the
labor, equipment, logistics, and computing cost. This can help to inform
conservation policies more efficiently. The underlying computational method of
learning-based Structure-from-Motion has broad implications for fast low-cost
mapping of underwater environments other than coral reefs.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - Automatic Coral Detection with YOLO: A Deep Learning Approach for Efficient and Accurate Coral Reef Monitoring [0.0]
Coral reefs are vital ecosystems that are under increasing threat due to local human impacts and climate change.
In this paper, we present an automatic coral detection system utilizing the You Only Look Once deep learning model.
arXiv Detail & Related papers (2024-04-03T08:00:46Z) - BenthIQ: a Transformer-Based Benthic Classification Model for Coral
Restoration [4.931399476945033]
Coral reefs are vital for marine biodiversity, coastal protection, and supporting human livelihoods globally.
Current methods for creating benthic composition maps often compromise between spatial coverage and resolution.
We introduce BenthIQ, a multi-label semantic segmentation network designed for high-precision classification of underwater substrates.
arXiv Detail & Related papers (2023-11-22T19:25:31Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Pengembangan Model untuk Mendeteksi Kerusakan pada Terumbu Karang dengan
Klasifikasi Citra [3.254879465902239]
This study utilizes a specialized dataset consisting of 923 images collected from Flickr using the Flickr API.
The method employed in this research involves the use of machine learning models, particularly convolutional neural networks (CNN)
It was found that a from-scratch ResNet model can outperform pretrained models in terms of precision and accuracy.
arXiv Detail & Related papers (2023-08-08T15:30:08Z) - Robot Goes Fishing: Rapid, High-Resolution Biological Hotspot Mapping in
Coral Reefs with Vision-Guided Autonomous Underwater Vehicles [6.658103076536836]
Biological hotspot detection can help coral reef managers prioritize limited resources for monitoring and intervention tasks.
Here, we explore the use of autonomous underwater vehicles (AUVs) with cameras, coupled with visual detectors and photogrammetry, to map and identify these hotspots.
To the best of our knowledge, we present one of the first attempts at using an AUV to gather visually-observed, fine-grain biological hotspot maps.
arXiv Detail & Related papers (2023-05-03T16:12:47Z) - Combining Photogrammetric Computer Vision and Semantic Segmentation for
Fine-grained Understanding of Coral Reef Growth under Climate Change [6.335630432207172]
Corals are the primary habitat-building life-form on reefs that support a quarter of the species in the ocean.
For the first time, 3D fine-grained semantic modeling and rugosity evaluation of coral reefs have been completed at millimeter (mm) accuracy.
arXiv Detail & Related papers (2022-12-08T08:09:57Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses.
Existing methods may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images.
We argue that preserving the continuity of extracted vessels requires to take into account the global geometry.
We propose a hybrid representation learning approach to address this challenge.
arXiv Detail & Related papers (2020-12-14T05:22:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.