Similarity-Distance-Magnitude Universal Verification
- URL: http://arxiv.org/abs/2502.20167v2
- Date: Wed, 12 Mar 2025 20:21:05 GMT
- Title: Similarity-Distance-Magnitude Universal Verification
- Authors: Allen Schmaltz,
- Abstract summary: We create sdm networks with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties.<n>We provide open-source software implementing these results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting sdm activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer sdm activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from sdm calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct sdm networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.
Related papers
- Matrix Factorization for Inferring Associations and Missing Links [5.700773330654261]
Missing link prediction identifies unseen but potentially existing connections in a network.
In proliferation detection, this supports efforts to identify and characterize attempts by state and non-state actors to acquire nuclear weapons.
We introduce novel weighted (WNMFk), Boolean (BNMFk), and Recommender (RNMFk) matrix factorization methods, along with ensemble variants incorporating logistic factorization, for link prediction.
arXiv Detail & Related papers (2025-03-06T18:22:46Z) - Robust Confinement State Classification with Uncertainty Quantification through Ensembled Data-Driven Methods [39.27649013012046]
We develop methods for confinement state classification with uncertainty quantification and model robustness.<n>We focus on off-line analysis for TCV discharges, distinguishing L-mode, H-mode, and an in-between dithering phase (D)<n>A dataset of 302 TCV discharges is fully labeled, and will be publicly released.
arXiv Detail & Related papers (2025-02-24T18:25:22Z) - Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation [0.0]
We explore uncertainty estimation as a proxy for correctness in LLM-generated code.
We adapt two state-of-the-art techniques from natural language generation to the domain of code generation.
Our findings indicate a strong correlation between the uncertainty computed through these techniques and correctness.
arXiv Detail & Related papers (2025-02-17T10:03:01Z) - Probabilistic Skip Connections for Deterministic Uncertainty Quantification in Deep Neural Networks [2.186901738997927]
Current deterministic methods often retrain networks with spectral normalization.<n>We propose using measures of neural collapse to identify an existing intermediate layer that is both sensitive and smooth.<n>We then fit a probabilistic model to the feature vector of this intermediate layer, which we call a probabilistic skip connection (PSC)
arXiv Detail & Related papers (2025-01-08T20:12:33Z) - Quantifying the Prediction Uncertainty of Machine Learning Models for Individual Data [2.1248439796866228]
This study investigates pNML's learnability for linear regression and neural networks.<n>It demonstrates that pNML can improve the performance and robustness of these models on various tasks.
arXiv Detail & Related papers (2024-12-10T13:58:19Z) - Post-hoc Probabilistic Vision-Language Models [51.12284891724463]
Vision-language models (VLMs) have found remarkable success in classification, retrieval, and generative tasks.<n>We propose post-hoc uncertainty estimation in VLMs that does not require additional training.<n>Our results show promise for safety-critical applications of large-scale models.
arXiv Detail & Related papers (2024-12-08T18:16:13Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
offline estimation of the dynamical model of a Markov Decision Process (MDP) is a non-trivial task.
Recent works showed that an expert-guided pipeline relying on Density Estimation methods effectively detects this structure in deterministic environments.
We show that the former results lead to a performance improvement when solving the learned MDP and then applying the optimized policy in the real environment.
arXiv Detail & Related papers (2021-12-18T14:32:32Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Learning Calibrated Uncertainties for Domain Shift: A Distributionally
Robust Learning Approach [150.8920602230832]
We propose a framework for learning calibrated uncertainties under domain shifts.
In particular, the density ratio estimation reflects the closeness of a target (test) sample to the source (training) distribution.
We show that our proposed method generates calibrated uncertainties that benefit downstream tasks.
arXiv Detail & Related papers (2020-10-08T02:10:54Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.