Robust Confinement State Classification with Uncertainty Quantification through Ensembled Data-Driven Methods
- URL: http://arxiv.org/abs/2502.17397v1
- Date: Mon, 24 Feb 2025 18:25:22 GMT
- Title: Robust Confinement State Classification with Uncertainty Quantification through Ensembled Data-Driven Methods
- Authors: Yoeri Poels, Cristina Venturini, Alessandro Pau, Olivier Sauter, Vlado Menkovski, the TCV team, the WPTE team,
- Abstract summary: We develop methods for confinement state classification with uncertainty quantification and model robustness.<n>We focus on off-line analysis for TCV discharges, distinguishing L-mode, H-mode, and an in-between dithering phase (D)<n>A dataset of 302 TCV discharges is fully labeled, and will be publicly released.
- Score: 39.27649013012046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Maximizing fusion performance in tokamaks relies on high energy confinement, often achieved through distinct operating regimes. The automated labeling of these confinement states is crucial to enable large-scale analyses or for real-time control applications. While this task becomes difficult to automate near state transitions or in marginal scenarios, much success has been achieved with data-driven models. However, these methods generally provide predictions as point estimates, and cannot adequately deal with missing and/or broken input signals. To enable wide-range applicability, we develop methods for confinement state classification with uncertainty quantification and model robustness. We focus on off-line analysis for TCV discharges, distinguishing L-mode, H-mode, and an in-between dithering phase (D). We propose ensembling data-driven methods on two axes: model formulations and feature sets. The former considers a dynamic formulation based on a recurrent Fourier Neural Operator-architecture and a static formulation based on gradient-boosted decision trees. These models are trained using multiple feature groupings categorized by diagnostic system or physical quantity. A dataset of 302 TCV discharges is fully labeled, and will be publicly released. We evaluate our method quantitatively using Cohen's kappa coefficient for predictive performance and the Expected Calibration Error for the uncertainty calibration. Furthermore, we discuss performance using a variety of common and alternative scenarios, the performance of individual components, out-of-distribution performance, cases of broken or missing signals, and evaluate conditionally-averaged behavior around different state transitions. Overall, the proposed method can distinguish L, D and H-mode with high performance, can cope with missing or broken signals, and provides meaningful uncertainty estimates.
Related papers
- CALF: A Conditionally Adaptive Loss Function to Mitigate Class-Imbalanced Segmentation [0.2902243522110345]
Imbalanced datasets pose a challenge in training deep learning (DL) models for medical diagnostics.
We propose a novel, statistically driven, conditionally adaptive loss function (CALF) tailored to accommodate the conditions of imbalanced datasets in DL training.
arXiv Detail & Related papers (2025-04-06T12:03:33Z) - Similarity-Distance-Magnitude Universal Verification [0.0]
We create sdm networks with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties.
We provide open-source software implementing these results.
arXiv Detail & Related papers (2025-02-27T15:05:00Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
This paper presents a novel framework for estimating the joint PMF and automatically inferring its rank from observed data.
We derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging variational inference (SVI)
Experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
arXiv Detail & Related papers (2024-10-08T20:07:49Z) - Evaluating Model Performance Under Worst-case Subpopulations [8.615300901890253]
We study the worst-case performance of a model over all subpopulations of a given size, defined with respect to core attributes Z.
We develop a scalable yet principled two-stage estimation procedure that can evaluate the robustness of state-of-the-art models.
arXiv Detail & Related papers (2024-07-01T14:24:05Z) - It's All in the Mix: Wasserstein Classification and Regression with Mixed Features [5.106912532044251]
We develop and analyze distributionally robust prediction models that faithfully account for the presence of discrete features.
We demonstrate that our models can significantly outperform existing methods that are agnostic to the presence of discrete features.
arXiv Detail & Related papers (2023-12-19T15:15:52Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.<n>We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - A Targeted Accuracy Diagnostic for Variational Approximations [8.969208467611896]
Variational Inference (VI) is an attractive alternative to Markov Chain Monte Carlo (MCMC)
Existing methods characterize the quality of the whole variational distribution.
We propose the TArgeted Diagnostic for Distribution Approximation Accuracy (TADDAA)
arXiv Detail & Related papers (2023-02-24T02:50:18Z) - Robust Fitted-Q-Evaluation and Iteration under Sequentially Exogenous
Unobserved Confounders [16.193776814471768]
We study robust policy evaluation and policy optimization in the presence of sequentially-exogenous unobserved confounders.
We provide sample complexity bounds, insights, and show effectiveness both in simulations and on real-world longitudinal healthcare data of treating sepsis.
arXiv Detail & Related papers (2023-02-01T18:40:53Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.