Layer-Aware Task Arithmetic: Disentangling Task-Specific and Instruction-Following Knowledge
- URL: http://arxiv.org/abs/2502.20186v1
- Date: Thu, 27 Feb 2025 15:22:14 GMT
- Title: Layer-Aware Task Arithmetic: Disentangling Task-Specific and Instruction-Following Knowledge
- Authors: Yan-Lun Chen, Yi-Ru Wei, Chia-Yi Hsu, Chia-Mu Yu, Chun-Ying Huang, Ying-Dar Lin, Yu-Sung Wu, Wei-Bin Lee,
- Abstract summary: Task Arithmetic (TA), which combines task vectors derived from fine-tuning, enables multi-task learning and task forgetting but struggles to isolate task-specific knowledge from general instruction-following behavior.<n>We propose Layer-Aware Task Arithmetic (LATA), a novel approach that assigns layer-specific weights to task vectors based on their alignment with instruction-following or task-specific components.
- Score: 12.367471198090655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) demonstrate strong task-specific capabilities through fine-tuning, but merging multiple fine-tuned models often leads to degraded performance due to overlapping instruction-following components. Task Arithmetic (TA), which combines task vectors derived from fine-tuning, enables multi-task learning and task forgetting but struggles to isolate task-specific knowledge from general instruction-following behavior. To address this, we propose Layer-Aware Task Arithmetic (LATA), a novel approach that assigns layer-specific weights to task vectors based on their alignment with instruction-following or task-specific components. By amplifying task-relevant layers and attenuating instruction-following layers, LATA improves task learning and forgetting performance while preserving overall model utility. Experiments on multiple benchmarks, including WikiText-2, GSM8K, and HumanEval, demonstrate that LATA outperforms existing methods in both multi-task learning and selective task forgetting, achieving higher task accuracy and alignment with minimal degradation in output quality. Our findings highlight the importance of layer-wise analysis in disentangling task-specific and general-purpose knowledge, offering a robust framework for efficient model merging and editing.
Related papers
- Tint Your Models Task-wise for Improved Multi-task Model Merging [17.496018757317824]
We propose Model Tinting, a test-time approach that introduces a single task-specific layer for each task as trainable adjustments.<n>Our method jointly trains merging coefficients and task-specific layers, which effectively reduces task conflicts with minimal additional costs.<n>Our method achieves state-of-the-art performance across both computer vision and natural language processing tasks.
arXiv Detail & Related papers (2024-12-26T07:42:06Z) - Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Sample-Level Weighting for Multi-Task Learning with Auxiliary Tasks [0.0]
Multi-task learning (MTL) can improve the generalization performance of neural networks by sharing representations with related tasks.
MTL can also degrade performance through harmful interference between tasks.
We propose SLGrad, a sample-level weighting algorithm for multi-task learning with auxiliary tasks.
arXiv Detail & Related papers (2023-06-07T15:29:46Z) - Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Distribution Matching for Heterogeneous Multi-Task Learning: a
Large-scale Face Study [75.42182503265056]
Multi-Task Learning has emerged as a methodology in which multiple tasks are jointly learned by a shared learning algorithm.
We deal with heterogeneous MTL, simultaneously addressing detection, classification & regression problems.
We build FaceBehaviorNet, the first framework for large-scale face analysis, by jointly learning all facial behavior tasks.
arXiv Detail & Related papers (2021-05-08T22:26:52Z) - Learning Task Decomposition with Ordered Memory Policy Network [73.3813423684999]
We propose Ordered Memory Policy Network (OMPN) to discover subtask hierarchy by learning from demonstration.
OMPN can be applied to partially observable environments and still achieve higher task decomposition performance.
Our visualization confirms that the subtask hierarchy can emerge in our model.
arXiv Detail & Related papers (2021-03-19T18:13:35Z) - HydaLearn: Highly Dynamic Task Weighting for Multi-task Learning with
Auxiliary Tasks [4.095907708855597]
Multi-task learning (MTL) can improve performance on a task by sharing representations with one or more related auxiliary-tasks.
Usually, MTL-networks are trained on a composite loss function formed by a constant weighted combination of the separate task losses.
In practice, constant loss weights lead to poor results for two reasons: (i) for mini-batch based optimisation, the optimal task weights vary significantly from one update to the next depending on mini-batch sample composition.
We introduce HydaLearn, an intelligent weighting algorithm that connects main-task gain to the individual task gradients, in order to inform
arXiv Detail & Related papers (2020-08-26T16:04:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.