論文の概要: Differentially-private frugal estimation of quantiles
- arxiv url: http://arxiv.org/abs/2502.20207v1
- Date: Thu, 27 Feb 2025 15:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:55:26.142472
- Title: Differentially-private frugal estimation of quantiles
- Title(参考訳): 分位子の微分プライベートなフラグアル推定
- Authors: Massimo Cafaro, Aneglo Coluccia, Italo Epicoco, Marco Pulimeno,
- Abstract要約: 量子は、平均や分散のようなモーメントに基づく指標と比較して、基礎となる分布の堅牢な指標である。
ストリームアイテムは非常に高いレートで届き、可能な限り早く処理され、破棄されなければならない。
本稿では,DP-FRUGAL-1U-L,DP-FRUGAL-1U-G,DP-FRUGAL-1U-rho,DP-FRUGAL-2U-SAのフラグアル推定アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.934266338788597
- License:
- Abstract: Fast and accurate estimation of quantiles on data streams coming from communication networks, Internet of Things (IoT), and alike, is at the heart of important data processing applications including statistical analysis, latency monitoring, query optimization for parallel database management systems, and more. Indeed, quantiles are more robust indicators for the underlying distribution, compared to moment-based indicators such as mean and variance. The streaming setting additionally constrains accurate tracking of quantiles, as stream items may arrive at a very high rate and must be processed as quickly as possible and discarded, being their storage usually unfeasible. Since an exact solution is only possible when data are fully stored, the goal in practical contexts is to provide an approximate solution with a provably guaranteed bound on the approximation error committed, while using a minimal amount of space. At the same time, with the increasing amount of personal and sensitive information exchanged, it is essential to design privacy protection techniques to ensure confidentiality and data integrity. In this paper we present the following differentially private streaming algorithms for frugal estimation of a quantile: DP-FRUGAL-1U-L, DP-FRUGAL-1U-G, DP-FRUGAL-1U-\r{ho} and DP-FRUGAL-2U-SA. Frugality refers to the ability of the algorithms to provide a good approximation to the sought quantile using a modest amount of space, either one or two units of memory. We provide a theoretical analysis and extensive experimental results, in which we also compare DP-FRUGAL-1U-L with LDPQ, a recent state of the art algorithm, and show that DP-FRUGAL-1U-L outperforms LDPQ in both accuracy and speed.
- Abstract(参考訳): 通信ネットワークやIoT(Internet of Things)などのデータストリーム上の量子化の高速かつ正確な推定は、統計分析、レイテンシ監視、並列データベース管理システムのクエリ最適化など、重要なデータ処理アプリケーションの中心である。
実際、量子は、平均や分散のようなモーメントに基づく指標よりも、基礎となる分布の堅牢な指標である。
ストリーミング設定は、ストリームアイテムが非常に高い速度で到着し、可能な限り早く処理され、破棄されなければならないため、クオンタミリの正確なトラッキングを制限します。
データの完全保存時にのみ正確な解が可能であるので、現実的な文脈における目標は、最小の空間を使用しながら、コミットした近似誤差に証明可能な有界な近似解を提供することである。
同時に、個人情報や機密情報の交換量の増加に伴い、機密性やデータの整合性を確保するためにプライバシー保護技術の設計が不可欠である。
本稿では,DP-FRUGAL-1U-L, DP-FRUGAL-1U-G, DP-FRUGAL-1U-\r{ho}, DP-FRUGAL-2U-SA, のフラガル推定アルゴリズムについて述べる。
フルガリティ(Frugality)とは、1単位または2単位のメモリを用いて、探索された量子化に良い近似を与えるアルゴリズムの能力を指す。
我々は,DP-FRUGAL-1U-Lを最近の最先端アルゴリズムであるLPPQと比較し,DP-FRUGAL-1U-LがDPQよりも精度と速度で優れていることを示す。
関連論文リスト
- Scalable Bayesian Tensor Ring Factorization for Multiway Data Analysis [24.04852523970509]
非パラメトリック乗算ガンマプロセス(MGP)を前もって組み込んだ新しいBTRモデルを提案する。
離散データを扱うために、クローズドフォーム更新のためのP'olya-Gamma拡張を導入する。
そこで我々は,従来のVIアルゴリズムの計算複雑性を2桁に減らした,一貫した後続シミュレーションのための効率的なギブスサンプリング器を開発した。
論文 参考訳(メタデータ) (2024-12-04T13:55:14Z) - Federated PCA and Estimation for Spiked Covariance Matrices: Optimal Rates and Efficient Algorithm [19.673557166734977]
フェデレートラーニング(FL)は、プライバシとデータセキュリティの強化により、機械学習において、近年大きな注目を集めている。
本稿では,分散差分プライバシー制約下でのフェデレーションPCAとスパイク共分散行列の推定について検討する。
我々は、集中サーバの最適レートがローカルクライアントのミニマックスレートの調和平均であることから、収束のミニマックスレートを確立する。
論文 参考訳(メタデータ) (2024-11-23T21:57:50Z) - Improved Communication-Privacy Trade-offs in $L_2$ Mean Estimation under Streaming Differential Privacy [47.997934291881414]
既存の平均推定スキームは、通常、$L_infty$幾何に最適化され、ランダムな回転や、$L$幾何に適応するカシンの表現に依存する。
本稿では,スパシフィケーションに固有のランダム性をDPに組み込んだ,スパシフィケーションガウシアン機構の新たなプライバシ会計手法を提案する。
従来の手法とは異なり、我々の会計アルゴリズムは直接$L$幾何で動作し、ガウスの機構に迅速に収束するMSEが得られる。
論文 参考訳(メタデータ) (2024-05-02T03:48:47Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGDとDP-NSGDは、センシティブなトレーニングデータを記憶する大規模モデルのリスクを軽減する。
DP-NSGD は DP-SGD よりも比較的チューニングが比較的容易であるのに対して,これらの2つのアルゴリズムは同様の精度を実現する。
論文 参考訳(メタデータ) (2022-06-27T03:45:02Z) - FedADMM: A Robust Federated Deep Learning Framework with Adaptivity to
System Heterogeneity [4.2059108111562935]
Federated Learning(FL)は、エッジデバイスによる大規模データの分散処理のための新興フレームワークである。
本稿では,FLAD FedADMMに基づく新しいプロトコルを提案する。
我々は,FedADMMが通信効率の点で,すべてのベースライン手法を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-07T15:58:33Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
追加データをクエリすることで制限をサイドステップするMBOアルゴリズムであるJUMBOを提案する。
GP-UCBに類似した条件下では, 応答が得られないことを示す。
実世界の2つの最適化問題に対する既存手法に対する性能改善を実証的に示す。
論文 参考訳(メタデータ) (2021-06-02T05:03:38Z) - On the Practicality of Differential Privacy in Federated Learning by
Tuning Iteration Times [51.61278695776151]
フェデレートラーニング(FL)は、分散クライアント間で機械学習モデルを協調的にトレーニングする際のプライバシ保護でよく知られている。
最近の研究では、naive flは勾配リーク攻撃の影響を受けやすいことが指摘されている。
ディファレンシャルプライバシ(dp)は、勾配漏洩攻撃を防御するための有望な対策として現れる。
論文 参考訳(メタデータ) (2021-01-11T19:43:12Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。