Spatio-temporal tensor-network approaches to out-of-equilibrium dynamics bridging open and closed systems
- URL: http://arxiv.org/abs/2502.20214v1
- Date: Thu, 27 Feb 2025 15:54:40 GMT
- Title: Spatio-temporal tensor-network approaches to out-of-equilibrium dynamics bridging open and closed systems
- Authors: Sergio Cerezo-Roquebrún, Aleix Bou-Comas, Jan T. Schneider, Esperanza López, Luca Tagliacozzo, Stefano Carignano,
- Abstract summary: We review recent approaches based on finding better algorithmic strategies for the full-temporal and tensor networks.<n>We discuss recent developments, highlight the complexity of influence functionals in various dynamical regimes.<n>We provide an outlook on strategies to encode complementary influence functional overlaps, paving the way for accurate descriptions of open and closed quantum systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of many-body quantum systems out of equilibrium remains a significant challenge with complexity barriers arising in both state and operator-based representations. In this work, we review recent approaches based on finding better contraction strategies for the full spatio-temporal tensor networks that encode the path integral of the dynamics, as well as the conceptual integration of influence functionals, process tensors, and transfer matrices within the tensor network formalism. We discuss recent algorithmic developments, highlight the complexity of influence functionals in various dynamical regimes and present consistent results of different communities, showing how ergodic dynamics render these functionals exponentially difficult to compress. Finally, we provide an outlook on strategies to encode complementary influence functional overlaps, paving the way for accurate descriptions of open and closed quantum systems with tensor networks.
Related papers
- From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks [47.13391046553908]
In artificial networks, the effectiveness of these models relies on their ability to build task specific representation.
Prior studies highlight that different initializations can place networks in either a lazy regime, where representations remain static, or a rich/feature learning regime, where representations evolve dynamically.
These solutions capture the evolution of representations and the Neural Kernel across the spectrum from the rich to the lazy regimes.
arXiv Detail & Related papers (2024-09-22T23:19:04Z) - Dynamical Mean-Field Theory of Self-Attention Neural Networks [0.0]
Transformer-based models have demonstrated exceptional performance across diverse domains.
Little is known about how they operate or what are their expected dynamics.
We use methods for the study of asymmetric Hopfield networks in nonequilibrium regimes.
arXiv Detail & Related papers (2024-06-11T13:29:34Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Spectral chaos bounds from scaling theory of maximally efficient quantum-dynamical scrambling [44.99833362998488]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.<n>We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.<n>We establish that scaling predictions are matched by a privileged process and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all time scales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Quantum correlation functions through tensor network path integral [0.0]
tensor networks are utilized for calculating equilibrium correlation function for open quantum systems.
The influence of the solvent on the quantum system is incorporated through an influence functional.
The design and implementation of this method is discussed along with illustrations from rate theory, symmetrized spin correlation functions, dynamical susceptibility calculations and quantum thermodynamics.
arXiv Detail & Related papers (2023-08-21T07:46:51Z) - Numerical simulations of long-range open quantum many-body dynamics with
tree tensor networks [0.0]
We introduce a numerical method for open quantum systems, based on tree tensor networks.
Such a structure is expected to improve the encoding of many-body correlations.
We adopt an integration scheme suited for long-range interactions and applications to dissipative dynamics.
arXiv Detail & Related papers (2023-04-12T18:00:03Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Collisional open quantum dynamics with a generally correlated
environment: Exact solvability in tensor networks [0.0]
We find a natural Markovian embedding for the system dynamics, where the role of an auxiliary system is played by virtual indices of the network.
The results advance tensor-network methods in the fields of quantum optics and quantum transport.
arXiv Detail & Related papers (2022-02-09T19:48:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.