論文の概要: Deep Convolutional Neural Networks for Palm Fruit Maturity Classification
- arxiv url: http://arxiv.org/abs/2502.20223v1
- Date: Thu, 27 Feb 2025 16:06:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:32.018829
- Title: Deep Convolutional Neural Networks for Palm Fruit Maturity Classification
- Title(参考訳): パームフルーツ成熟度分類のための深部畳み込みニューラルネットワーク
- Authors: Mingqiang Han, Chunlin Yi,
- Abstract要約: 本研究の目的は,ヤシ果実のイメージを5つの熟度レベルに正確に分類できるコンピュータビジョンシステムを開発することである。
成熟度に基づいてヤシ果実のイメージを分類するために、深層畳み込みニューラルネットワーク(CNN)を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: To maximize palm oil yield and quality, it is essential to harvest palm fruit at the optimal maturity stage. This project aims to develop an automated computer vision system capable of accurately classifying palm fruit images into five ripeness levels. We employ deep Convolutional Neural Networks (CNNs) to classify palm fruit images based on their maturity stage. A shallow CNN serves as the baseline model, while transfer learning and fine-tuning are applied to pre-trained ResNet50 and InceptionV3 architectures. The study utilizes a publicly available dataset of over 8,000 images with significant variations, which is split into 80\% for training and 20\% for testing. The proposed deep CNN models achieve test accuracies exceeding 85\% in classifying palm fruit maturity stages. This research highlights the potential of deep learning for automating palm fruit ripeness assessment, which can contribute to optimizing harvesting decisions and improving palm oil production efficiency.
- Abstract(参考訳): パーム油の収量と品質を最大化するためには、パーム果実を最適な成熟期に収穫することが不可欠である。
本研究の目的は,ヤシ果実のイメージを5つの熟度レベルに正確に分類できるコンピュータビジョンシステムを開発することである。
成熟度に基づいてヤシ果実のイメージを分類するために、深層畳み込みニューラルネットワーク(CNN)を用いる。
浅いCNNがベースラインモデルとして機能し、トランスファーラーニングと微調整が事前訓練されたResNet50とInceptionV3アーキテクチャに適用される。
この研究は、8000以上の画像の公開データセットを使用しており、大きなバリエーションがあり、トレーニングは80倍、テストは20倍に分割されている。
提案した深部CNNモデルは,ヤシ果実の熟成段階の分類において,85%以上の精度を達成する。
本研究は,ヤシの果実熟度評価を自動化するための深層学習の可能性を強調し,収穫決定の最適化とパーム油生産効率の向上に寄与する。
関連論文リスト
- Classifying Healthy and Defective Fruits with a Multi-Input Architecture and CNN Models [0.0]
主な目的は、CNNモデルの精度を高めることである。
その結果,Multi-Input アーキテクチャにシルエット画像を含めることで,優れた性能のモデルが得られることがわかった。
論文 参考訳(メタデータ) (2024-10-14T21:37:12Z) - Fruit Classification System with Deep Learning and Neural Architecture Search [0.9217021281095907]
この研究では、Avocado、Bana、Cherry、Apple Braeburn、Apple Golden 1, Apricot、Grape、Kiwi、Mango、Orange、Papaaya、Peach、Pineapple、Pomegranate、Strawberryの合計15種類の果物が特定された。
提案した99.98% mAPモデルにより,Fruitデータセットを用いた先行研究における検出性能が向上した。
論文 参考訳(メタデータ) (2024-06-04T00:41:47Z) - Convolutional Neural Network Ensemble Learning for Hyperspectral
Imaging-based Blackberry Fruit Ripeness Detection in Uncontrolled Farm
Environment [4.292727554656705]
本稿では,ブラックベリー果実の熟しやすさの微妙な特徴を検出するために,新しいマルチインプット畳み込みニューラルネットワーク(CNN)アンサンブル分類器を提案する。
提案したモデルは、未確認セットで95.1%の精度、フィールド条件で90.2%の精度を達成した。
論文 参考訳(メタデータ) (2024-01-09T12:00:17Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
食品を格付けするための特徴記述子を多用する多くの自動的手法が提案されている。
機械学習とディープラーニング技術がトップパフォーマンスの手法を支配している。
ディープラーニングは生のデータで操作できるため、複雑なエンジニアリング機能を計算する必要がなくなる。
論文 参考訳(メタデータ) (2022-12-29T19:32:20Z) - Fruit Quality Assessment with Densely Connected Convolutional Neural
Network [0.0]
我々はDensely Connected Convolutional Neural Networks(DenseNets)の概念を果物の品質評価に活用した。
提案されたパイプラインは99.67%の精度を達成した。
さらに,同モデルが同様の性能を示す果実分類および品質評価タスクにおいて,モデルの堅牢性をさらに検証した。
論文 参考訳(メタデータ) (2022-12-08T13:11:47Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
自動画像分類は食品科学における教師あり機械学習の一般的な課題である。
事前学習型視覚変換器(ViT)に基づく代替手法を提案する。
標準的なデバイス上で限られたリソースで簡単に実装できる。
論文 参考訳(メタデータ) (2022-07-10T19:52:20Z) - Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep
Learning [14.853897011640022]
本稿では,ハイパースペクトルカメラとディープニューラルネットワークアーキテクチャを用いて果実の熟度を計測するシステムを提案する。
このアーキテクチャは、成熟状態の予測において、競合するベースラインモデルに勝った。
論文 参考訳(メタデータ) (2021-04-20T07:43:19Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
畳み込みネットワークは過去10年間、コンピュータビジョンの分野を支配してきた。
この傾向を長引かせる主要な戦略は、ネットワーク規模の拡大によるものだ。
我々は、異種情報ソースを追加することは、より大きなネットワークを構築するよりもCNNにとって費用対効果が高いと仮定している。
論文 参考訳(メタデータ) (2020-12-20T23:24:31Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
本稿では,CNNの特徴抽出器を訓練するために,最小限のユーザ選択画像を必要とする手法を提案する。
本手法は,クラスを識別する画像領域のユーザ描画マーカーから,各畳み込み層のフィルタを学習する。
バックプロパゲーションに基づく最適化には依存せず、ココナッツツリー空中画像のバイナリ分類にその利点を実証する。
論文 参考訳(メタデータ) (2020-08-08T15:50:23Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。