論文の概要: Fruit Quality Assessment with Densely Connected Convolutional Neural
Network
- arxiv url: http://arxiv.org/abs/2212.04255v1
- Date: Thu, 8 Dec 2022 13:11:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 15:51:07.872561
- Title: Fruit Quality Assessment with Densely Connected Convolutional Neural
Network
- Title(参考訳): 密結合畳み込みニューラルネットワークを用いた果実品質評価
- Authors: Md. Samin Morshed, Sabbir Ahmed, Tasnim Ahmed, Muhammad Usama Islam,
A. B. M. Ashikur Rahman
- Abstract要約: 我々はDensely Connected Convolutional Neural Networks(DenseNets)の概念を果物の品質評価に活用した。
提案されたパイプラインは99.67%の精度を達成した。
さらに,同モデルが同様の性能を示す果実分類および品質評価タスクにおいて,モデルの堅牢性をさらに検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate recognition of food items along with quality assessment is of
paramount importance in the agricultural industry. Such automated systems can
speed up the wheel of the food processing sector and save tons of manual labor.
In this connection, the recent advancement of Deep learning-based architectures
has introduced a wide variety of solutions offering remarkable performance in
several classification tasks. In this work, we have exploited the concept of
Densely Connected Convolutional Neural Networks (DenseNets) for fruit quality
assessment. The feature propagation towards the deeper layers has enabled the
network to tackle the vanishing gradient problems and ensured the reuse of
features to learn meaningful insights. Evaluating on a dataset of 19,526 images
containing six fruits having three quality grades for each, the proposed
pipeline achieved a remarkable accuracy of 99.67%. The robustness of the model
was further tested for fruit classification and quality assessment tasks where
the model produced a similar performance, which makes it suitable for real-life
applications.
- Abstract(参考訳): 農産物の正確な認識と品質評価は農業において最重要課題である。
このような自動化システムは、食品加工部門の車輪をスピードアップし、大量の手作業を削減することができる。
この関係において、近年のディープラーニングアーキテクチャの進歩は、いくつかの分類タスクにおいて顕著なパフォーマンスを提供する様々なソリューションを導入してきた。
本研究では,果実の品質評価にDensely Connected Convolutional Neural Networks(DenseNets)の概念を利用した。
深い層への機能伝播により、ネットワークは消滅する勾配問題に対処でき、有意義な洞察を学ぶために機能の再利用が保証された。
それぞれ3つの品質グレードを持つ6つの果実を含む19,526枚の画像のデータセットに基づいて、提案されたパイプラインは99.67%の精度を達成した。
このモデルの堅牢性は,果実の分類や品質評価のタスクにおいてさらに検証され,同モデルが類似した性能を生み出し,現実の応用に適していることがわかった。
関連論文リスト
- Enhancing Fruit and Vegetable Detection in Unconstrained Environment with a Novel Dataset [4.498047714838568]
本稿では,実環境における果実や野菜の検出とローカライズのためのエンドツーエンドパイプラインを提案する。
我々はFRUVEG67というデータセットをキュレートした。このデータセットには、制約のないシナリオでキャプチャされた67種類の果物や野菜の画像が含まれている。
Fruit and Vegetable Detection Network (FVDNet) は3つの異なるグリッド構成を持つYOLOv7のアンサンブルバージョンである。
論文 参考訳(メタデータ) (2024-09-20T08:46:03Z) - Fruit Classification System with Deep Learning and Neural Architecture Search [0.9217021281095907]
この研究では、Avocado、Bana、Cherry、Apple Braeburn、Apple Golden 1, Apricot、Grape、Kiwi、Mango、Orange、Papaaya、Peach、Pineapple、Pomegranate、Strawberryの合計15種類の果物が特定された。
提案した99.98% mAPモデルにより,Fruitデータセットを用いた先行研究における検出性能が向上した。
論文 参考訳(メタデータ) (2024-06-04T00:41:47Z) - MetaFruit Meets Foundation Models: Leveraging a Comprehensive Multi-Fruit Dataset for Advancing Agricultural Foundation Models [10.11552909915055]
今回紹介するMetaFruitは,4,248のイメージと248,015のラベル付きインスタンスからなる,公開可能な最大規模のマルチクラスフルーツデータセットである。
本研究では, 先進的ビジョン基礎モデル(VFM)を応用したオープンセット果実検出システムを提案する。
論文 参考訳(メタデータ) (2024-05-14T00:13:47Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
食品を格付けするための特徴記述子を多用する多くの自動的手法が提案されている。
機械学習とディープラーニング技術がトップパフォーマンスの手法を支配している。
ディープラーニングは生のデータで操作できるため、複雑なエンジニアリング機能を計算する必要がなくなる。
論文 参考訳(メタデータ) (2022-12-29T19:32:20Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - Food Ingredients Recognition through Multi-label Learning [0.0]
ダイエット自動評価システムにおいて, 食材中のさまざまな食材を識別する能力は重要な決定要因である。
我々は,料理画像中の任意の成分を検出するために,深層多ラベル学習アプローチを採用し,最先端のニューラルネットワークを評価した。
論文 参考訳(メタデータ) (2022-10-24T10:18:26Z) - Facilitated machine learning for image-based fruit quality assessment in
developing countries [68.8204255655161]
自動画像分類は食品科学における教師あり機械学習の一般的な課題である。
事前学習型視覚変換器(ViT)に基づく代替手法を提案する。
標準的なデバイス上で限られたリソースで簡単に実装できる。
論文 参考訳(メタデータ) (2022-07-10T19:52:20Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep
Learning [14.853897011640022]
本稿では,ハイパースペクトルカメラとディープニューラルネットワークアーキテクチャを用いて果実の熟度を計測するシステムを提案する。
このアーキテクチャは、成熟状態の予測において、競合するベースラインモデルに勝った。
論文 参考訳(メタデータ) (2021-04-20T07:43:19Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。