URL Inspection Tasks: Helping Users Detect Phishing Links in Emails
- URL: http://arxiv.org/abs/2502.20234v1
- Date: Thu, 27 Feb 2025 16:20:21 GMT
- Title: URL Inspection Tasks: Helping Users Detect Phishing Links in Emails
- Authors: Daniele Lain, Yoshimichi Nakatsuka, Kari Kostiainen, Gene Tsudik, Srdjan Capkun,
- Abstract summary: We develop a novel phishing defense mechanism based on URL inspection tasks.<n>These tasks require users to interact with, and understand, the basic URL structure.<n>Results show that these tasks significantly decrease the rate of successful phishing attempts.
- Score: 23.377429588655083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The most widespread type of phishing attack involves email messages with links pointing to malicious content. Despite user training and the use of detection techniques, these attacks are still highly effective. Recent studies show that it is user inattentiveness, rather than lack of education, that is one of the key factors in successful phishing attacks. To this end, we develop a novel phishing defense mechanism based on URL inspection tasks: small challenges (loosely inspired by CAPTCHAs) that, to be solved, require users to interact with, and understand, the basic URL structure. We implemented and evaluated three tasks that act as ``barriers'' to visiting the website: (1) correct click-selection from a list of URLs, (2) mouse-based highlighting of the domain-name URL component, and (3) re-typing the domain-name. These tasks follow best practices in security interfaces and warning design. We assessed the efficacy of these tasks through an extensive on-line user study with 2,673 participants from three different cultures, native languages, and alphabets. Results show that these tasks significantly decrease the rate of successful phishing attempts, compared to the baseline case. Results also showed the highest efficacy for difficult URLs, such as typo-squats, with which participants struggled the most. This highlights the importance of (1) slowing down users while focusing their attention and (2) helping them understand the URL structure (especially, the domain-name component thereof) and matching it to their intent.
Related papers
- Web Phishing Net (WPN): A scalable machine learning approach for real-time phishing campaign detection [0.0]
Phishing is the most prevalent type of cyber-attack today and is recognized as the leading source of data breaches.<n>In this paper, we propose an unsupervised learning approach that is fast but scalable.<n>It is able to detect entire campaigns at a time with a high detection rate while preserving user privacy.
arXiv Detail & Related papers (2025-02-17T15:06:56Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to content injection attacks.<n>We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance.<n>Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material.
arXiv Detail & Related papers (2025-01-30T18:02:15Z) - PhishIntel: Toward Practical Deployment of Reference-Based Phishing Detection [33.98293686647553]
PhishIntel is an end-to-end phishing detection system for real-world deployment.<n>It segmenting the detection process into two distinct tasks: a fast task that checks against local blacklists and result cache, and a slow task that conducts online blacklist verification, URL crawling, and webpage analysis.<n>This fast-slow task system architecture ensures low response latency while retaining the robust detection capabilities of reference-based phishing detectors.
arXiv Detail & Related papers (2024-12-12T08:33:39Z) - Eyes on the Phish(er): Towards Understanding Users' Email Processing Pattern and Mental Models in Phishing Detection [0.4543820534430522]
This study examines how workload affects susceptibility to phishing.
We use eye-tracking technology to observe participants' reading patterns and interactions with phishing emails.
Our results provide concrete evidence that attention to the email sender can reduce phishing susceptibility.
arXiv Detail & Related papers (2024-09-12T02:57:49Z) - From ML to LLM: Evaluating the Robustness of Phishing Webpage Detection Models against Adversarial Attacks [0.8050163120218178]
Phishing attacks attempt to deceive users into stealing sensitive information.
Current detection solutions remain vulnerable to adversarial attacks.
We develop a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages.
arXiv Detail & Related papers (2024-07-29T18:21:34Z) - Nudging Users to Change Breached Passwords Using the Protection Motivation Theory [58.87688846800743]
We draw on the Protection Motivation Theory (PMT) to design nudges that encourage users to change breached passwords.
Our study contributes to PMT's application in security research and provides concrete design implications for improving compromised credential notifications.
arXiv Detail & Related papers (2024-05-24T07:51:15Z) - Baseline Defenses for Adversarial Attacks Against Aligned Language
Models [109.75753454188705]
Recent work shows that text moderations can produce jailbreaking prompts that bypass defenses.
We look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training.
We find that the weakness of existing discretes for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs.
arXiv Detail & Related papers (2023-09-01T17:59:44Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
We introduce epsilon-illusory, a novel form of adversarial attack on sequential decision-makers.
Compared to existing attacks, we empirically find epsilon-illusory to be significantly harder to detect with automated methods.
Our findings suggest the need for better anomaly detectors, as well as effective hardware- and system-level defenses.
arXiv Detail & Related papers (2022-07-20T19:49:09Z) - PhishMatch: A Layered Approach for Effective Detection of Phishing URLs [8.658596218544774]
We present a layered anti-phishing defense, PhishMatch, which is robust, accurate, inexpensive, and client-side.
A prototype plugin of PhishMatch, developed for the Chrome browser, was found to be fast and lightweight.
arXiv Detail & Related papers (2021-12-04T03:21:29Z) - Robust and Verifiable Information Embedding Attacks to Deep Neural
Networks via Error-Correcting Codes [81.85509264573948]
In the era of deep learning, a user often leverages a third-party machine learning tool to train a deep neural network (DNN) classifier.
In an information embedding attack, an attacker is the provider of a malicious third-party machine learning tool.
In this work, we aim to design information embedding attacks that are verifiable and robust against popular post-processing methods.
arXiv Detail & Related papers (2020-10-26T17:42:42Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z) - Learning with Weak Supervision for Email Intent Detection [56.71599262462638]
We propose to leverage user actions as a source of weak supervision to detect intents in emails.
We develop an end-to-end robust deep neural network model for email intent identification.
arXiv Detail & Related papers (2020-05-26T23:41:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.