論文の概要: On the Importance of Reward Design in Reinforcement Learning-based Dynamic Algorithm Configuration: A Case Study on OneMax with (1+($λ$,$λ$))-GA
- arxiv url: http://arxiv.org/abs/2502.20265v1
- Date: Thu, 27 Feb 2025 16:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:27.383273
- Title: On the Importance of Reward Design in Reinforcement Learning-based Dynamic Algorithm Configuration: A Case Study on OneMax with (1+($λ$,$λ$))-GA
- Title(参考訳): 強化学習に基づく動的アルゴリズム構成におけるリワード設計の重要性について: (1+($λ$,$λ$))-GAを用いたOneMaxを事例として
- Authors: Tai Nguyen, Phong Le, André Biendenkapp, Carola Doerr, Nguyen Dang,
- Abstract要約: 本稿では,RLエージェントによる環境探索の促進を目的とした報奨形成機構を提案する。
我々の研究は、$(lambda,lambda)$-GAを動的に設定する際のRLの機能を示しているが、RLエージェントのスケーラビリティにおける報酬形成の利点も確認している。
- 参考スコア(独自算出の注目度): 4.178317607924683
- License:
- Abstract: Dynamic Algorithm Configuration (DAC) has garnered significant attention in recent years, particularly in the prevalence of machine learning and deep learning algorithms. Numerous studies have leveraged the robustness of decision-making in Reinforcement Learning (RL) to address the optimization challenges associated with algorithm configuration. However, making an RL agent work properly is a non-trivial task, especially in reward design, which necessitates a substantial amount of handcrafted knowledge based on domain expertise. In this work, we study the importance of reward design in the context of DAC via a case study on controlling the population size of the $(1+(\lambda,\lambda))$-GA optimizing OneMax. We observed that a poorly designed reward can hinder the RL agent's ability to learn an optimal policy because of a lack of exploration, leading to both scalability and learning divergence issues. To address those challenges, we propose the application of a reward shaping mechanism to facilitate enhanced exploration of the environment by the RL agent. Our work not only demonstrates the ability of RL in dynamically configuring the $(1+(\lambda,\lambda))$-GA, but also confirms the advantages of reward shaping in the scalability of RL agents across various sizes of OneMax problems.
- Abstract(参考訳): 動的アルゴリズム構成(DAC)は近年,特に機械学習やディープラーニングアルゴリズムの普及において,大きな注目を集めている。
アルゴリズム構成に伴う最適化課題に対処するために,強化学習(RL)における意思決定の堅牢性を活用する研究が数多く行われている。
しかし、RLエージェントを適切に動作させることは、特に報酬設計において、ドメインの専門知識に基づいて、かなりの量の手工的な知識を必要とする非自明な作業である。
本研究では,1+(\lambda,\lambda)$-GAオプティマイズOneMaxの集団サイズを制御するケーススタディを通じて,DACの文脈における報酬設計の重要性について検討する。
不十分な設計の報酬は、探索の欠如からRLエージェントが最適なポリシーを学習する能力を妨げ、スケーラビリティと学習のばらつきの両立につながることを観察した。
これらの課題に対処するため,RLエージェントによる環境探索の促進を目的とした報酬形成機構を提案する。
我々の研究は、$(1+(\lambda,\lambda)$-GAを動的に設定するRLの能力を実証するだけでなく、OneMaxのさまざまなサイズのRLエージェントのスケーラビリティにおける報酬形成の利点を裏付ける。
関連論文リスト
- A novel multi-agent dynamic portfolio optimization learning system based on hierarchical deep reinforcement learning [4.495144308458951]
DRLエージェントをアクター批判アルゴリズムと深度関数近似器を用いて訓練すると,DRLエージェントのリスク調整による収益性の改善が重要でないシナリオが生じる可能性がある。
本研究では,新しい多エージェント深層強化学習(L)アルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-12T15:00:02Z) - MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization [91.80034860399677]
強化学習アルゴリズムは、現在のベスト戦略の活用と、より高い報酬につながる可能性のある新しいオプションの探索のバランスを図ることを目的としている。
我々は本質的な探索と外生的な探索のバランスをとるためのフレームワークMaxInfoRLを紹介する。
提案手法は,マルチアームバンディットの簡易な設定において,サブリニアな後悔を実現するものである。
論文 参考訳(メタデータ) (2024-12-16T18:59:53Z) - Stage-Wise Reward Shaping for Acrobatic Robots: A Constrained Multi-Objective Reinforcement Learning Approach [12.132416927711036]
本稿では,直感的戦略による報酬形成プロセスの簡略化を目的としたRL手法を提案する。
制約付き多目的RL(CMORL)フレームワークにおいて,複数の報酬関数とコスト関数を定義する。
逐次的な複雑な動きを含むタスクに対しては、タスクを異なるステージに分割し、各ステージに対する複数の報酬とコストを定義します。
論文 参考訳(メタデータ) (2024-09-24T05:25:24Z) - Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control [1.1404490220482764]
BROは、犬とヒューマノイドのタスクにおいて、ほぼ最適ポリシーを達成するためのモデルフリーのアルゴリズムである。
BROは最先端の結果を達成し、主要なモデルベースおよびモデルフリーアルゴリズムを著しく上回っている。
BROは、非常に難しい犬とヒューマノイドのタスクにおいて、ほぼ最適なポリシーを達成した最初のモデルなしアルゴリズムである。
論文 参考訳(メタデータ) (2024-05-25T09:53:25Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - REBEL: Reward Regularization-Based Approach for Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
報酬関数と人間の嗜好の相違は、現実世界で破滅的な結果をもたらす可能性がある。
近年の手法は、人間の嗜好から報酬関数を学習することで、不適応を緩和することを目的としている。
本稿では,ロボットRLHFフレームワークにおける報酬正規化の新たな概念を提案する。
論文 参考訳(メタデータ) (2023-12-22T04:56:37Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
強化学習(Reinforcement Learning, RL)は、教師付き学習とは本質的に異なり、実際、これらの学習は単純なRLタスクでもうまく機能しない。
エージェント勾配分布は非独立で同一分布であり、非効率なメタトレーニングをもたらす。
おもちゃのタスクでしか訓練されていないが、我々の学習はブラックスの目に見えない複雑なタスクを一般化できることを示した。
論文 参考訳(メタデータ) (2023-02-03T00:11:02Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Learning Algorithms for Intelligent Agents and Mechanisms [4.251500966181852]
本稿では,2つの異なる文脈における最適意思決定のための学習アルゴリズム,パート1における強化学習,パート2におけるオークションデザインについて検討する。
第2章では統計物理学に触発された強化学習(Reinforcement Learning, RL)の新たなアプローチを開発し, 最適化された望ましい特性を持つ最適ポリシを学習するだけでなく, 最大エントロピーRLに新たな光を照射する。
第3章では、ベイズ的視点を用いてRLの一般化問題に取り組み、環境の不完全な知識が完全に観測されたマルコフ決定過程(MDP)を部分的に観測されたMDP(POMD)に変換することを効果的に示している。
論文 参考訳(メタデータ) (2022-10-06T03:12:43Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
エージェントが事前に特定された報酬関数を使わずに環境を徹底的に探索することを目的とした報酬のないRL問題について検討する。
関数近似の文脈でこの問題に取り組み、強力な関数近似器を活用する。
我々は、カーネルとニューラルファンクション近似器を用いた、証明可能な効率の良い報酬なしRLアルゴリズムを確立した。
論文 参考訳(メタデータ) (2021-10-19T07:26:33Z) - Active Finite Reward Automaton Inference and Reinforcement Learning
Using Queries and Counterexamples [31.31937554018045]
深部強化学習(RL)法は, 良好な性能を達成するために, 環境探索からの集中的なデータを必要とする。
本稿では,RLエージェントが探索過程を推論し,その将来的な探索を効果的に導くための高レベルの知識を蒸留するフレームワークを提案する。
具体的には、L*学習アルゴリズムを用いて、有限報酬オートマトンという形で高レベルの知識を学習する新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-28T21:13:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。