Quantum machine learning with Adaptive Boson Sampling via post-selection
- URL: http://arxiv.org/abs/2502.20305v1
- Date: Thu, 27 Feb 2025 17:32:05 GMT
- Title: Quantum machine learning with Adaptive Boson Sampling via post-selection
- Authors: Francesco Hoch, Eugenio Caruccio, Giovanni Rodari, Tommaso Francalanci, Alessia Suprano, Taira Giordani, Gonzalo Carvacho, Nicolò Spagnolo, Seid Koudia, Massimiliano Proietti, Carlo Liorni, Filippo Cerocchi, Riccardo Albiero, Niki Di Giano, Marco Gardina, Francesco Ceccarelli, Giacomo Corrielli, Ulysse Chabaud, Roberto Osellame, Massimiliano Dispenza, Fabio Sciarrino,
- Abstract summary: We report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform.<n>Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning.
- Score: 0.42110855444787276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.
Related papers
- Photonic Quantum Convolutional Neural Networks with Adaptive State Injection [0.39928148142956393]
We design and experimentally implement the first photonic quantum convolutional neural network (PQCNN) based on particle-number preserving circuits equipped with state injection.
We experimentally validate the PQCNN for a binary image classification on a photonic platform utilizing a semiconductor quantum dot-based single-photon source.
We highlight the potential utility of a simple adaptive technique for a nonlinear Boson Sampling task, compatible with near-term quantum devices.
arXiv Detail & Related papers (2025-04-29T17:57:01Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Demonstration of Hardware Efficient Photonic Variational Quantum Algorithm [2.4630731476141365]
We show that single photons and linear optical networks are sufficient for implementing Variational Quantum Algorithms.
We show this by a proof-of-principle demonstration of a variational approach to tackle an instance of a factorization task.
arXiv Detail & Related papers (2024-08-19T18:26:57Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Demonstration of quantum projective simulation on a single-photon-based quantum computer [0.0]
Variational quantum algorithms show potential in effectively operating on noisy intermediate-scale quantum devices.
We present the implementation of this algorithm on Ascella, a single-photon-based quantum computer from Quandela.
arXiv Detail & Related papers (2024-04-19T09:17:15Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Validation of a noisy Gaussian boson sampler via graph theory [0.0]
photonic-based sampling machines solving the Gaussian Boson Sampling problem play a central role in the experimental demonstration of a quantum computational advantage.<n>In this work, we test the performances of the recently developed photonic machine Borealis as a sampling machine and its possible use cases in graph theory.
arXiv Detail & Related papers (2023-06-21T09:02:55Z) - Non-linear Boson Sampling [0.0]
We introduce the adoption of non-linear photon-photon interactions in the Boson Sampling framework.
By extending the computational expressivity of Boson Sampling, the introduction of non-linearities promises to disclose novel functionalities.
arXiv Detail & Related papers (2021-10-26T15:41:51Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.