Demonstration of quantum projective simulation on a single-photon-based quantum computer
- URL: http://arxiv.org/abs/2404.12729v2
- Date: Wed, 06 Nov 2024 16:47:22 GMT
- Title: Demonstration of quantum projective simulation on a single-photon-based quantum computer
- Authors: Giacomo Franceschetto, Arno Ricou,
- Abstract summary: Variational quantum algorithms show potential in effectively operating on noisy intermediate-scale quantum devices.
We present the implementation of this algorithm on Ascella, a single-photon-based quantum computer from Quandela.
- Score: 0.0
- License:
- Abstract: Variational quantum algorithms show potential in effectively operating on noisy intermediate-scale quantum devices. A novel variational approach to reinforcement learning has been recently proposed, incorporating linear-optical interferometers and a classical learning model known as projective simulation (PS). PS is a decision-making tool for reinforcement learning and can be classically represented as a random walk on a graph that describes the agent's memory. In its optical quantum version, this approach utilizes quantum walks of single photons on a mesh of tunable beamsplitters and phase shifters to select actions. In this work, we present the implementation of this algorithm on Ascella, a single-photon-based quantum computer from Quandela. The focus is drawn on solving a test bed task to showcase the potential of the quantum agent with respect to the classical agent.
Related papers
- Demonstration of Hardware Efficient Photonic Variational Quantum Algorithm [2.4630731476141365]
We show that single photons and linear optical networks are sufficient for implementing Variational Quantum Algorithms.
We show this by a proof-of-principle demonstration of a variational approach to tackle an instance of a factorization task.
arXiv Detail & Related papers (2024-08-19T18:26:57Z) - Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Towards interpretable quantum machine learning via single-photon quantum
walks [2.4047296366832307]
We present a variational method to quantize projective simulation (PS)
PS is a reinforcement learning model aimed at interpretable artificial intelligence.
We show that the quantized PS model can exploit quantum interference to acquire capabilities beyond those of its classical counterpart.
arXiv Detail & Related papers (2023-01-31T14:38:33Z) - Quantum Kernel Evaluation via Hong-Ou-Mandel Interference [11.270300525597227]
We propose and simulate a protocol capable of evaluating quantum kernels using Hong-Ou-Mandel (HOM) interference.
As a result, interfering two photons and using the detected coincidence counts, we can perform a direct measurement and binary classification.
This physical platform confers an exponential quantum advantage also described theoretically in other works.
arXiv Detail & Related papers (2022-12-22T23:55:23Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.