Photonic Quantum Convolutional Neural Networks with Adaptive State Injection
- URL: http://arxiv.org/abs/2504.20989v1
- Date: Tue, 29 Apr 2025 17:57:01 GMT
- Title: Photonic Quantum Convolutional Neural Networks with Adaptive State Injection
- Authors: Léo Monbroussou, Beatrice Polacchi, Verena Yacoub, Eugenio Caruccio, Giovanni Rodari, Francesco Hoch, Gonzalo Carvacho, Nicolò Spagnolo, Taira Giordani, Mattia Bossi, Abhiram Rajan, Niki Di Giano, Riccardo Albiero, Francesco Ceccarelli, Roberto Osellame, Elham Kashefi, Fabio Sciarrino,
- Abstract summary: We design and experimentally implement the first photonic quantum convolutional neural network (PQCNN) based on particle-number preserving circuits equipped with state injection.<n>We experimentally validate the PQCNN for a binary image classification on a photonic platform utilizing a semiconductor quantum dot-based single-photon source.<n>We highlight the potential utility of a simple adaptive technique for a nonlinear Boson Sampling task, compatible with near-term quantum devices.
- Score: 0.39928148142956393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Linear optical architectures have been extensively investigated for quantum computing and quantum machine learning applications. Recently, proposals for photonic quantum machine learning have combined linear optics with resource adaptivity, such as adaptive circuit reconfiguration, which promises to enhance expressivity and improve algorithm performances and scalability. Moreover, linear optical platforms preserve some subspaces due to the fixed number of particles during the computation, a property recently exploited to design a novel quantum convolutional neural networks. This last architecture has shown an advantage in terms of running time complexity and of the number of parameters needed with respect to other quantum neural network proposals. In this work, we design and experimentally implement the first photonic quantum convolutional neural network (PQCNN) architecture based on particle-number preserving circuits equipped with state injection, an approach recently proposed to increase the controllability of linear optical circuits. Subsequently, we experimentally validate the PQCNN for a binary image classification on a photonic platform utilizing a semiconductor quantum dot-based single-photon source and programmable integrated photonic interferometers comprising 8 and 12 modes. In order to investigate the scalability of the PQCNN design, we have performed numerical simulations on datasets of different sizes. We highlight the potential utility of a simple adaptive technique for a nonlinear Boson Sampling task, compatible with near-term quantum devices.
Related papers
- Quantum machine learning with Adaptive Boson Sampling via post-selection [0.42110855444787276]
We report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform.
Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning.
arXiv Detail & Related papers (2025-02-27T17:32:05Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
We present a novel architecture for dissipative quantum neural networks (DQNNs) in which each building block can implement any quantum channel.<n>We derive a versatile one-to-one parametrization of isometries, allowing for an efficient implementation of the proposed structure.
arXiv Detail & Related papers (2025-02-13T17:38:48Z) - Quantum optical neural networks with programmable nonlinearities [0.0]
We show that using programmable nonlinearities, rather than linear optics, offers a more efficient method for constructing quantum optical circuits.<n>This approach significantly reduces the number of adjustable parameters and the circuit depth needed to achieve high-fidelity operation.
arXiv Detail & Related papers (2024-10-10T12:37:05Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Variational learning for quantum artificial neural networks [0.0]
We first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors.
We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols.
While keeping full compatibility with the overall memory-efficient feed-forward architecture, our constructions effectively reduce the quantum circuit depth required to determine the activation probability of single neurons.
arXiv Detail & Related papers (2021-03-03T16:10:15Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Recurrent Quantum Neural Networks [7.6146285961466]
Recurrent neural networks are the foundation of many sequence-to-sequence models in machine learning.
We construct a quantum recurrent neural network (QRNN) with demonstrable performance on non-trivial tasks.
We evaluate the QRNN on MNIST classification, both by feeding the QRNN each image pixel-by-pixel; and by utilising modern data augmentation as preprocessing step.
arXiv Detail & Related papers (2020-06-25T17:59:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.