論文の概要: Expertise Is What We Want
- arxiv url: http://arxiv.org/abs/2502.20335v1
- Date: Thu, 27 Feb 2025 18:05:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:59:11.299494
- Title: Expertise Is What We Want
- Title(参考訳): 専門知識が欲しがるもの
- Authors: Alan Ashworth, Munir Al-Dajani, Keegan Duchicela, Kiril Kafadarov, Allison Kurian, Othman Laraki, Amina Lazrak, Divneet Mandair, Wendy McKennon, Rebecca Miksad, Jayodita Sanghvi, Travis Zack,
- Abstract要約: アプリケーションアーキテクチャ、LLE(Large Language Expert)は、LLM(Large Language Models)の柔軟性とパワーと、Expert Systemsの解釈可能性、説明可能性、信頼性を組み合わせたものです。
LLE(Large Language Expert)システムのパワーを強調するために,新たに癌と診断された患者の作業を支援するLLEを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Clinical decision-making depends on expert reasoning, which is guided by standardized, evidence-based guidelines. However, translating these guidelines into automated clinical decision support systems risks inaccuracy and importantly, loss of nuance. We share an application architecture, the Large Language Expert (LLE), that combines the flexibility and power of Large Language Models (LLMs) with the interpretability, explainability, and reliability of Expert Systems. LLMs help address key challenges of Expert Systems, such as integrating and codifying knowledge, and data normalization. Conversely, an Expert System-like approach helps overcome challenges with LLMs, including hallucinations, atomic and inexpensive updates, and testability. To highlight the power of the Large Language Expert (LLE) system, we built an LLE to assist with the workup of patients newly diagnosed with cancer. Timely initiation of cancer treatment is critical for optimal patient outcomes. However, increasing complexity in diagnostic recommendations has made it difficult for primary care physicians to ensure their patients have completed the necessary workup before their first visit with an oncologist. As with many real-world clinical tasks, these workups require the analysis of unstructured health records and the application of nuanced clinical decision logic. In this study, we describe the design & evaluation of an LLE system built to rapidly identify and suggest the correct diagnostic workup. The system demonstrated a high degree of clinical-level accuracy (>95%) and effectively addressed gaps identified in real-world data from breast and colon cancer patients at a large academic center.
- Abstract(参考訳): 臨床意思決定は、標準化されたエビデンスベースのガイドラインによって導かれる専門家の推論に依存する。
しかし、これらのガイドラインを自動臨床意思決定支援システムに翻訳すると、不正確で重要なニュアンス喪失のリスクが生じる。
アプリケーションアーキテクチャ、LLE(Large Language Expert)は、LLM(Large Language Models)の柔軟性とパワーと、Expert Systemsの解釈可能性、説明可能性、信頼性を組み合わせたものです。
LLMは、知識の統合や体系化、データの正規化など、エキスパートシステムの重要な課題に対処するのに役立つ。
逆に、Expert Systemのようなアプローチは、幻覚、アトミックと安価なアップデート、テスト容易性など、LLMの課題を克服するのに役立つ。
LLE(Large Language Expert)システムのパワーを強調するために,新たに癌と診断された患者の作業を支援するLLEを構築した。
がん治療のタイムリーな開始は、最適な患者の結果に不可欠である。
しかし, 診断勧告の複雑さの増大は, 初診医が初診前に必要なワークアップを完了させるのを困難にしている。
多くの実際の臨床作業と同様に、これらのワークアップは、構造化されていない健康記録の分析と、ニュアンスな臨床決定ロジックの適用を必要とする。
本研究では,診断作業の迅速化と提案を目的としたLLEシステムの設計と評価について述べる。
当システムでは, 臨床レベルの精度が95%以上で, 乳がん患者と大腸がん患者の大センターでの実データから得られたギャップに効果的に対処した。
関連論文リスト
- Integrating Generative Artificial Intelligence in ADRD: A Framework for Streamlining Diagnosis and Care in Neurodegenerative Diseases [0.0]
臨床医の能力を高めることにより,大規模言語モデル (LLM) がより迅速な実践的応用を実現することを提案する。
我々は,LLMが患者と提供者の両方と効果的にコミュニケーションできる能力を活用する,責任あるAI統合のためのフレームワークを提案する。
このアプローチは、標準化された高品質のデータ収集を優先し、患者が遭遇するたびに学習するシステムを実現する。
論文 参考訳(メタデータ) (2025-02-06T19:09:11Z) - Exploring Large Language Models for Specialist-level Oncology Care [17.34069859182619]
乳腺腫瘍治療のサブスペシャリスト領域における対話型診断AIシステムAMIEの性能について検討した。
当科では, 治療・治療・難治性症例の50種類の合成乳がんビグネットを切除した。
症例要約の質, ケア計画の安全性, 化学療法, 放射線療法, 手術, ホルモン療法の勧告など, 管理計画を評価するための詳細な臨床用ルーリックを開発した。
論文 参考訳(メタデータ) (2024-11-05T18:30:13Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
大規模言語モデル(LLM)は、医療のさまざまな側面に革命をもたらすことのできる、変革的なAIツールのクラスである。
本チュートリアルは、LSMを臨床実践に効果的に統合するために必要なツールを医療専門家に提供することを目的としている。
論文 参考訳(メタデータ) (2024-10-24T15:41:56Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
本稿では,大規模言語モデルと特定の診断規則との整合性を考慮したルールアラインフレームワークを提案する。
患者と医師間の規則に基づくコミュニケーションを含む医療対話データセットを開発した。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-22T17:44:40Z) - Automating PTSD Diagnostics in Clinical Interviews: Leveraging Large Language Models for Trauma Assessments [7.219693607724636]
我々は、ワークフローにカスタマイズされた大言語モデル(LLM)を統合することで、この不足に対処することを目指している。
臨床医が担当する診断面接411件を収集し,高品質なデータを得るための新しいアプローチを考案した。
インタビュー内容に基づいたPTSD診断評価を自動化するための総合的なフレームワークを構築した。
論文 参考訳(メタデータ) (2024-05-18T05:04:18Z) - Large Language Models in the Clinic: A Comprehensive Benchmark [63.21278434331952]
診療所の大規模言語モデル(LLM)をよりよく理解するためのベンチマークであるClimateBenchを構築した。
まず、さまざまな臨床言語の生成、理解、推論タスクを含む11の既存のデータセットを収集します。
次に,現実の実践において複雑だが一般的である6つの新しいデータセットと臨床タスクを構築した。
ゼロショット設定と少数ショット設定の両方で、20個のLDMを広範囲に評価する。
論文 参考訳(メタデータ) (2024-04-25T15:51:06Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Beyond Direct Diagnosis: LLM-based Multi-Specialist Agent Consultation
for Automatic Diagnosis [30.943705201552643]
本研究では,潜在的な疾患に対するエージェントの確率分布を適応的に融合させることにより,現実世界の診断過程をモデル化する枠組みを提案する。
提案手法では,パラメータ更新とトレーニング時間を大幅に短縮し,効率と実用性を向上する。
論文 参考訳(メタデータ) (2024-01-29T12:25:30Z) - Towards Conversational Diagnostic AI [32.84876349808714]
本稿では,診断対話に最適化されたLarge Language Model (LLM)ベースのAIシステムであるAMIE(Articulate Medical Intelligence Explorer)を紹介する。
AMIEは、さまざまな疾患条件にまたがって学習をスケールするための自動フィードバック機構を備えた、セルフプレイベースのシミュレート環境を使用する。
AMIEの診断精度は, 専門医によると32例中28例, 患者アクターでは26例中24例で高い成績を示した。
論文 参考訳(メタデータ) (2024-01-11T04:25:06Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。