Naturalistic Computational Cognitive Science: Towards generalizable models and theories that capture the full range of natural behavior
- URL: http://arxiv.org/abs/2502.20349v1
- Date: Thu, 27 Feb 2025 18:20:54 GMT
- Title: Naturalistic Computational Cognitive Science: Towards generalizable models and theories that capture the full range of natural behavior
- Authors: Wilka Carvalho, Andrew Lampinen,
- Abstract summary: We argue that progress in AI offers opportunities for cognitive science to embrace experiments with increasingly naturalistic stimuli, tasks, and behaviors.<n>We offer practical guidance on how methodological practices can contribute to cumulative progress in naturalistic computational cognitive science.
- Score: 4.298496794225824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence increasingly pursues large, complex models that perform many tasks within increasingly realistic domains. How, if at all, should these developments in AI influence cognitive science? We argue that progress in AI offers timely opportunities for cognitive science to embrace experiments with increasingly naturalistic stimuli, tasks, and behaviors; and computational models that can accommodate these changes. We first review a growing body of research spanning neuroscience, cognitive science, and AI that suggests that incorporating a broader range of naturalistic experimental paradigms (and models that accommodate them) may be necessary to resolve some aspects of natural intelligence and ensure that our theories generalize. We then suggest that integrating recent progress in AI and cognitive science will enable us to engage with more naturalistic phenomena without giving up experimental control or the pursuit of theoretically grounded understanding. We offer practical guidance on how methodological practices can contribute to cumulative progress in naturalistic computational cognitive science, and illustrate a path towards building computational models that solve the real problems of natural cognition - together with a reductive understanding of the processes and principles by which they do so.
Related papers
- Scaling Laws in Scientific Discovery with AI and Robot Scientists [72.3420699173245]
An autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle.
AGS aims to significantly reduce the time and resources needed for scientific discovery.
As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws.
arXiv Detail & Related papers (2025-03-28T14:00:27Z) - World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child [10.183372891207966]
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making.
We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI.
arXiv Detail & Related papers (2025-03-19T12:50:40Z) - Rethinking Cognition: Morphological Info-Computation and the Embodied Paradigm in Life and Artificial Intelligence [1.14219428942199]
This study aims to place Lorenzo Magnanis Eco-Cognitive Computationalism within the broader context of current work on information, computation, and cognition.<n>We model cognition as a web of concurrent morphological computations, driven by processes of self-assembly, self-organisation, and autopoiesis across physical, chemical, and biological domains.
arXiv Detail & Related papers (2024-12-01T10:04:53Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science [6.637438611344584]
We focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment.
We present a collection of methods in AI for researchers to build AI systems inspired by cognitive science.
arXiv Detail & Related papers (2023-10-13T01:21:55Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Natural Computational Architectures for Cognitive Info-Communication [3.3758186776249928]
Recent comprehensive overview of 40 years of research in cognitive architectures, (Kotseruba and Tsotsos 2020), evaluates modelling of the core cognitive abilities in humans, but only marginally addresses biologically plausible approaches based on natural computation.
We use evolutionary info-computational framework, where natural/ physical/ morphological computation leads to evolution of increasingly complex cognitive systems.
arXiv Detail & Related papers (2021-10-01T18:01:16Z) - Morphological Computation and Learning to Learn In Natural Intelligent
Systems And AI [2.487445341407889]
Deep learning algorithms have been inspired from the beginning by nature, specifically by the human brain, in spite of our incomplete knowledge about its brain function.
The question is, what can the inspiration from computational nature at this stage of the development contribute to deep learning and how much models and experiments in machine learning can motivate, justify and lead research in neuroscience and cognitive science.
arXiv Detail & Related papers (2020-04-05T20:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.