When does a predictor know its own loss?
- URL: http://arxiv.org/abs/2502.20375v1
- Date: Thu, 27 Feb 2025 18:50:51 GMT
- Title: When does a predictor know its own loss?
- Authors: Aravind Gollakota, Parikshit Gopalan, Aayush Karan, Charlotte Peale, Udi Wieder,
- Abstract summary: We study the theoretical foundations of loss prediction.<n>Our main contribution is to establish tight connections between nontrivial loss prediction and certain forms of multicalibration.<n>We show that a loss predictor that is able to improve on the self-estimate of a predictor yields a witness to a failure of multicalibration.
- Score: 4.5321697125473674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a predictor and a loss function, how well can we predict the loss that the predictor will incur on an input? This is the problem of loss prediction, a key computational task associated with uncertainty estimation for a predictor. In a classification setting, a predictor will typically predict a distribution over labels and hence have its own estimate of the loss that it will incur, given by the entropy of the predicted distribution. Should we trust this estimate? In other words, when does the predictor know what it knows and what it does not know? In this work we study the theoretical foundations of loss prediction. Our main contribution is to establish tight connections between nontrivial loss prediction and certain forms of multicalibration, a multigroup fairness notion that asks for calibrated predictions across computationally identifiable subgroups. Formally, we show that a loss predictor that is able to improve on the self-estimate of a predictor yields a witness to a failure of multicalibration, and vice versa. This has the implication that nontrivial loss prediction is in effect no easier or harder than auditing for multicalibration. We support our theoretical results with experiments that show a robust positive correlation between the multicalibration error of a predictor and the efficacy of training a loss predictor.
Related papers
- Measuring In-Context Computation Complexity via Hidden State Prediction [33.504027525492056]
We show that a neural sequence model's ability to predict its own future hidden states correlates with the intuitive interestingness of the task.
We propose a novel learned predictive prior that enables us to measure the novel information gained in each step.
Our metric predicts the description length of formal languages learned in-context, the complexity of mathematical reasoning problems, and the correctness of self-generated reasoning chains.
arXiv Detail & Related papers (2025-03-17T17:56:14Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
We study a collective risk dilemma where agents decide whether to trust predictions based on past accuracy.<n>As predictions shape collective outcomes, social welfare arises naturally as a metric of concern.<n>We show how to achieve better trade-offs and use them for mechanism design.
arXiv Detail & Related papers (2024-08-09T16:03:44Z) - When No-Rejection Learning is Consistent for Regression with Rejection [11.244583592648443]
We study a no-reject learning strategy that uses all the data to learn the prediction.
This paper investigates a no-reject learning strategy that uses all the data to learn the prediction.
arXiv Detail & Related papers (2023-07-06T11:43:22Z) - Incentivizing honest performative predictions with proper scoring rules [4.932130498861987]
We say a prediction is a fixed point if it accurately reflects the expert's beliefs after that prediction has been made.
We show that, for binary predictions, if the influence of the expert's prediction on outcomes is bounded, it is possible to define scoring rules under which optimal reports are arbitrarily close to fixed points.
arXiv Detail & Related papers (2023-05-28T00:53:26Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - Unifying Lower Bounds on Prediction Dimension of Consistent Convex
Surrogates [12.751555473216683]
Given a prediction task, understanding when one can and cannot design a consistent convex surrogate loss is an important area of machine learning research.
We unify these settings using tools from property elicitation, and give a general lower bound on prediction dimension.
Our lower bound tightens existing results in the case of discrete predictions, showing that previous calibration-based bounds can largely be recovered via property elicitation.
For continuous estimation, our lower bound resolves on open problem on estimating measures of risk and uncertainty.
arXiv Detail & Related papers (2021-02-16T15:29:05Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z) - Malicious Experts versus the multiplicative weights algorithm in online
prediction [85.62472761361107]
We consider a prediction problem with two experts and a forecaster.
We assume that one of the experts is honest and makes correct prediction with probability $mu$ at each round.
The other one is malicious, who knows true outcomes at each round and makes predictions in order to maximize the loss of the forecaster.
arXiv Detail & Related papers (2020-03-18T20:12:08Z) - Performative Prediction [31.876692592395777]
We develop a framework for performative prediction bringing together concepts from statistics, game theory, and causality.
A conceptual novelty is an equilibrium notion we call performative stability.
Our main results are necessary and sufficient conditions for the convergence of retraining to a performatively stable point of nearly minimal loss.
arXiv Detail & Related papers (2020-02-16T20:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.