論文の概要: Unified Kernel-Segregated Transpose Convolution Operation
- arxiv url: http://arxiv.org/abs/2502.20493v1
- Date: Thu, 27 Feb 2025 19:56:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:32.707677
- Title: Unified Kernel-Segregated Transpose Convolution Operation
- Title(参考訳): Unified Kernel-Segregated Transpose Convolution Operation
- Authors: Vijay Srinivas Tida, Md Imran Hossen, Liqun Shan, Sai Venkatesh Chilukoti, Sonya Hsu, Xiali Hei,
- Abstract要約: 本稿では,メモリと計算資源の使用を制限する統一カーネル分離手法を提案する。
EB-GANモデルにおける畳み込み層を変換する方法は,最大35MBのメモリ節約効果を示す。
- 参考スコア(独自算出の注目度): 3.4558311080267954
- License:
- Abstract: The optimization of the transpose convolution layer for deep learning applications is achieved with the kernel segregation mechanism. However, kernel segregation has disadvantages, such as computing extra elements to obtain the output feature map with odd dimensions while launching a thread. To mitigate this problem, we introduce a unified kernel segregation approach that limits the usage of memory and computational resources by employing one unified kernel to execute four sub-kernels. The findings reveal that the suggested approach achieves an average computational speedup of 2.03x (3.89x) when tested on specific datasets with an RTX 2070 GPU (Intel Xeon CPU). The ablation study shows an average computational speedup of 3.5x when evaluating the transpose convolution layers from well-known Generative Adversarial Networks (GANs). The implementation of the proposed method for the transpose convolution layers in the EB-GAN model demonstrates significant memory savings of up to 35 MB.
- Abstract(参考訳): 深層学習アプリケーションのためのトランスポジション畳み込み層の最適化はカーネル分離機構を用いて達成される。
しかし、カーネルの分離には、余分な要素を計算して、スレッドの起動中に奇妙な次元の出力特徴写像を得るといった欠点がある。
この問題を軽減するために,1つのカーネルを用いて4つのサブカーネルを実行することにより,メモリと計算資源の使用を制限する統一カーネル分離手法を導入する。
この結果は、RTX 2070 GPU(Intel Xeon CPU)で特定のデータセットでテストした場合、提案したアプローチが平均計算速度2.03x (3.89x)を達成することを明らかにした。
アブレーション研究は、よく知られたGAN(Generative Adversarial Networks)からの変換畳み込み層の評価において、平均3.5倍の計算速度を示す。
EB-GANモデルにおける変換畳み込み層の実装により,最大35MBのメモリ節約が可能となった。
関連論文リスト
- An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks [0.5737287537823071]
回転同変グラフニューラルネットワークは、空間深層学習タスクにおける最先端の性能を得る。
クレーブシュ=ゴルドンテンソル積(Clebsch-Gordon tensor product, CG)は、2つの高次特徴ベクトルと高度に構造化されたスパーステンソルを交換して高密度出力ベクトルを生成するカーネルである。
我々は,CGテンソル製品用のGPUスパースカーネルジェネレータを導入し,既存のオープンソース実装とクローズドソース実装の大幅な高速化を実現した。
論文 参考訳(メタデータ) (2025-01-23T08:20:47Z) - Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss [59.835032408496545]
本稿では, コントラスト損失計算を任意の小ブロックに分割するタイルベースの戦略を提案する。
分散システムの階層構造を活用するためのマルチレベルタイリング戦略も導入する。
SOTAメモリ効率のソリューションと比較すると、同等の速度を維持しながら、メモリの2桁の削減を実現している。
論文 参考訳(メタデータ) (2024-10-22T17:59:30Z) - State-Free Inference of State-Space Models: The Transfer Function Approach [132.83348321603205]
状態のない推論では、状態サイズが大きくなると大きなメモリや計算コストは発生しない。
提案した周波数領域転送関数のパラメトリゼーション特性を用いてこれを実現する。
長い畳み込みハイエナベースライン上での言語モデリングにおける難易度の改善を報告した。
論文 参考訳(メタデータ) (2024-05-10T00:06:02Z) - Tensor Slicing and Optimization for Multicore NPUs [2.670309629218727]
本稿では,Slicing Optimization (TSO) と呼ばれるマルチコアNPUに対するコンパイラ最適化パスを提案する。
TSOは、一連のCNNモデルの実行時間を最小化する最高のテンソルスライシングを特定する。
その結果、TSOは一連のCNNモデルの実行時間を最小化する最適なテンソルスライシングを識別できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T12:03:03Z) - Advancing Direct Convolution using Convolution Slicing Optimization and
ISA Extensions [1.2006896500048552]
畳み込みは、機械学習モデル推論のために実行しなければならない最も計算集約的な操作の1つである。
本稿では,MLIR/LLVMコード生成ツールチェーンをベースとした直接畳み込みアルゴリズムであるSConvを提案する。
論文 参考訳(メタデータ) (2023-03-08T17:23:39Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Kernel-Segregated Transpose Convolution Operation [2.9822184411723645]
転位畳み込み層は、各行と列の各要素にゼロを加算するため、特徴写像のサイズが大きくなるため、計算集約的である。
これらの問題を解決するために,効率的な変換畳み込み実装のためのアルゴリズムレベルの最適化手法を提案する。
論文 参考訳(メタデータ) (2022-09-08T10:42:49Z) - Distributed Out-of-Memory NMF on CPU/GPU Architectures [1.0051474951635875]
本稿では,HPCシステムに対する非負行列分解(NMF)アルゴリズムのメモリ外実装を提案する。
ベンチマークの結果、CPUベースのNMFkよりもGPUを使用した新しい実装により、32Xから76倍のスピードアップが大幅に改善された。
論文 参考訳(メタデータ) (2022-02-19T03:49:21Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
幅広いパラメータをカバーする汎用的な1D畳み込み層の効率的な実装を紹介します。
特にIntel AVX-512とAVX-512 BFloat16命令を含むアーキテクチャ向けに最適化されている。
本稿では,最適化された1次元畳み込み層の性能を,実際のゲノミクスデータセットを用いたエンドツーエンドニューラルネットワークトレーニングで実証する。
論文 参考訳(メタデータ) (2021-04-16T09:54:30Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
本稿では,インスタンスの性質に応じて適切な畳み込みカーネルを生成するデータ駆動型アプローチを提案する。
提案手法はScanetNetV2とS3DISの両方で有望な結果が得られる。
また、現在の最先端よりも推論速度を25%以上向上させる。
論文 参考訳(メタデータ) (2020-11-26T14:56:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。