論文の概要: Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems
- arxiv url: http://arxiv.org/abs/2502.20609v1
- Date: Fri, 28 Feb 2025 00:23:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:59.349947
- Title: Leveraging Large Language Models for Building Interpretable Rule-Based Data-to-Text Systems
- Title(参考訳): 解釈可能なルールベースデータ-テキストシステム構築のための大規模言語モデルの活用
- Authors: Jędrzej Warczyński, Mateusz Lango, Ondrej Dusek,
- Abstract要約: そこで本研究では,大規模言語モデル(LLM)を用いて,完全に解釈可能なデータ・テキスト・システムを自動的に実装するシンプルなアプローチを提案する。
実行時に、単一のCPUのみを使用して、ニューラルネットワークが必要とする処理時間のごく一部でテキストを生成する。
- 参考スコア(独自算出の注目度): 10.54430941755474
- License:
- Abstract: We introduce a simple approach that uses a large language model (LLM) to automatically implement a fully interpretable rule-based data-to-text system in pure Python. Experimental evaluation on the WebNLG dataset showed that such a constructed system produces text of better quality (according to the BLEU and BLEURT metrics) than the same LLM prompted to directly produce outputs, and produces fewer hallucinations than a BART language model fine-tuned on the same data. Furthermore, at runtime, the approach generates text in a fraction of the processing time required by neural approaches, using only a single CPU
- Abstract(参考訳): 我々は,大言語モデル(LLM)を用いて,完全に解釈可能なルールベースのデータ・テキスト・システムを自動的に実装するシンプルなアプローチを提案する。
WebNLGデータセットを実験的に評価したところ、そのような構築されたシステムは、出力を直接生成するLLMよりも優れた品質(BLEUとBLEURTのメトリクス)のテキストを生成し、同じデータに基づいて微調整されたBART言語モデルよりも幻覚を少なくすることがわかった。
さらに、実行時に1つのCPUのみを使用して、ニューラルネットワークが必要とする処理時間のごく一部でテキストを生成する。
関連論文リスト
- Improving Text Embeddings with Large Language Models [59.930513259982725]
合成データと1k以下のトレーニングステップのみを用いて,高品質なテキスト埋め込みを実現するための,新しい簡易な手法を提案する。
我々は、93言語にまたがる数十万のテキスト埋め込みタスクのための多様な合成データを生成するために、プロプライエタリなLLMを活用している。
実験により,ラベル付きデータを使わずに,高度に競争力のあるテキスト埋め込みベンチマークにおいて高い性能が得られることが示された。
論文 参考訳(メタデータ) (2023-12-31T02:13:18Z) - Generative Context-aware Fine-tuning of Self-supervised Speech Models [54.389711404209415]
生成型大規模言語モデル(LLM)生成コンテキスト情報の利用について検討する。
自己教師型音声モデルの微調整中に生成した情報を抽出する手法を提案する。
本稿では,SLUE と Libri-light のベンチマークを用いて,自動音声認識,名前付きエンティティ認識,感情分析を行う手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T15:46:02Z) - Controlled Text Generation via Language Model Arithmetic [7.687678490751105]
本稿では,大規模言語モデルの合成とバイアス化のための新しい推論フレームワークであるモデル演算を導入する。
モデル算術により生成したテキストのきめ細かい制御が可能であり, 毒性低減の課題において, 最先端の処理性能に優れることを示す。
論文 参考訳(メタデータ) (2023-11-24T13:41:12Z) - A Simple yet Efficient Ensemble Approach for AI-generated Text Detection [0.5840089113969194]
大規模言語モデル(LLM)は、人間の文章によく似たテキストを生成する際、顕著な能力を示した。
人工的に生成されたテキストと人間が作成したテキストを区別できる自動化アプローチを構築することが不可欠である。
本稿では,複数の構成 LLM からの予測をまとめて,シンプルで効率的な解を提案する。
論文 参考訳(メタデータ) (2023-11-06T13:11:02Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
大規模言語モデル(LLM)は、より大きな文脈長を扱う。
LLM は、ターゲットテキストが大きければ SotA を一貫して上回る。
ゼロショット学習よりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-10-12T17:17:27Z) - Finstreder: Simple and fast Spoken Language Understanding with Finite
State Transducers using modern Speech-to-Text models [69.35569554213679]
Spoken Language Understanding (SLU) では、音声コマンドから重要な情報を抽出する。
本稿では,有限状態トランスデューサにインテントやエンティティを埋め込む簡単な方法を提案する。
論文 参考訳(メタデータ) (2022-06-29T12:49:53Z) - AUGNLG: Few-shot Natural Language Generation using Self-trained Data
Augmentation [26.016540126949103]
本稿では,自己学習型ニューラル検索モデルと数ショット学習型NLUモデルを組み合わせた新しいデータ拡張手法であるAUGNLGを提案する。
提案方式はBLEUとSlot Error Rateの両方でFewShotWOZデータの最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-06-10T08:45:28Z) - Time-Stamped Language Model: Teaching Language Models to Understand the
Flow of Events [8.655294504286635]
我々はこの課題を質問応答問題として定式化することを提案する。
これにより、手続き的テキスト理解に適応することで、他のQAベンチマークで事前訓練された言語モデルを使用することができる。
Proparaデータセットで評価したモデルでは、F1スコアが3.1%上昇した状態での公開結果の改善が示されている。
論文 参考訳(メタデータ) (2021-04-15T17:50:41Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z) - POINTER: Constrained Progressive Text Generation via Insertion-based
Generative Pre-training [93.79766670391618]
ハードコントラストテキスト生成のための新しい挿入ベースアプローチであるPOINTERを提案する。
提案手法は,既存のトークン間で段階的に新しいトークンを並列に挿入することによって動作する。
結果として生じる粗大な階層構造は、生成プロセスを直感的で解釈可能である。
論文 参考訳(メタデータ) (2020-05-01T18:11:54Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
FewShotWozは,タスク指向対話システムにおける数ショットの学習設定をシミュレートする最初の NLG ベンチマークである。
我々は, SC-GPTモデルを開発し, その制御可能な生成能力を得るために, 注釈付きNLGコーパスの大規模なセットで事前学習を行った。
FewShotWozとMulti-Domain-WOZデータセットの実験は、提案したSC-GPTが既存の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2020-02-27T18:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。