Glioma Classification using Multi-sequence MRI and Novel Wavelets-based Feature Fusion
- URL: http://arxiv.org/abs/2502.20715v1
- Date: Fri, 28 Feb 2025 04:58:41 GMT
- Title: Glioma Classification using Multi-sequence MRI and Novel Wavelets-based Feature Fusion
- Authors: Kiranmayee Janardhan, Christy Bobby Thomas,
- Abstract summary: Glioma, a prevalent and heterogeneous tumor originating from the glial cells, can be differentiated as Low Grade Glioma (LGG) and High Grade Glioma (HGG) according to WHO norms.<n>For non-invasive glioma evaluation, Magnetic Resonance Imaging (MRI) offers vital information about the morphology and location of the the tumor.<n>In this work, wavelet based novel fusion algorithm were implemented on multi-sequence T1, T1-contrast enhanced (T1CE), T2 and Fluid Attenuated Inversion Recovery (FLAIR) MRI images to compute the radiomics features.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glioma, a prevalent and heterogeneous tumor originating from the glial cells, can be differentiated as Low Grade Glioma (LGG) and High Grade Glioma (HGG) according to World Health Organization's norms. Classifying gliomas is essential for treatment protocols that depend extensively on subtype differentiation. For non-invasive glioma evaluation, Magnetic Resonance Imaging (MRI) offers vital information about the morphology and location of the the tumor. The versatility of MRI allows the classification of gliomas as LGG and HGG based on their texture, perfusion, and diffusion characteristics, and further for improving the diagnosis and providing tailored treatments. Nevertheless, the precise classification is complicated by tumor heterogeneity and overlapping radiomic characteristics. Thus, in this work, wavelet based novel fusion algorithm were implemented on multi-sequence T1, T1-contrast enhanced (T1CE), T2 and Fluid Attenuated Inversion Recovery (FLAIR) MRI images to compute the radiomics features. Furthermore, principal component analysis is applied to reduce the feature space and XGBoost, Support Vector Machine, and Random Forest Classifier are used for the classification. The result shows that the SVM algorithm performs comparatively well with an accuracy of 90.17%, precision of 91.04% and recall of 96.19%, F1-score of 93.53%, and AUC of 94.60% when implemented on BraTS 2018 dataset and with an accuracy of 91.34%, precision of 93.05% and recall of 96.13%, F1-score of 94.53%, and AUC of 93.71% for BraTS 2018 dataset. Thus, the proposed algorithm could be potentially implemented for the computer-aided diagnosis and grading system for gliomas.
Related papers
- Subclass Classification of Gliomas Using MRI Fusion Technique [0.0]
Glioma, the prevalent primary brain tumor, exhibits diverse aggressiveness levels and prognoses.<n>This study aims to develop an algorithm to fuse the MRI images from T1, T2, T1ce, and fluid-attenuated inversion recovery sequences.<n>The proposed method achieved a classification of accuracy of 99.25%, precision of 99.30%, recall of 99.10, F1 score of 99.19%, Intersection Over Union of 84.49%, and specificity of 99.76.
arXiv Detail & Related papers (2025-02-26T03:10:33Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Exploiting Precision Mapping and Component-Specific Feature Enhancement for Breast Cancer Segmentation and Identification [0.0]
We propose novel Deep Learning (DL) frameworks for breast lesion segmentation and classification.<n>We introduce a precision mapping mechanism (PMM) for a precision mapping and attention-driven LinkNet (PMAD-LinkNet) segmentation framework.<n>We also introduce a component-specific feature enhancement module (CSFEM) for a component-specific feature-enhanced classifier (CSFEC-Net)
arXiv Detail & Related papers (2024-07-03T06:40:26Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - MRI-based classification of IDH mutation and 1p/19q codeletion status of
gliomas using a 2.5D hybrid multi-task convolutional neural network [0.18374319565577152]
Isocitrate dehydrogenase mutation and 1p/19q codeletion status are important prognostic markers for glioma.
Our goal was to develop artificial intelligence-based methods to non-invasively determine these molecular alterations from MRI.
A 2.5D hybrid convolutional neural network was proposed to simultaneously localize the tumor and classify its molecular status.
arXiv Detail & Related papers (2022-10-07T18:46:39Z) - Open-radiomics: A Collection of Standardized Datasets and a Technical Protocol for Reproducible Radiomics Machine Learning Pipelines [0.0]
We curated large-scale radiomics datasets based on three open-source datasets; BraTS 2020 for high-grade glioma (HGG) versus low-grade glioma (LGG) classification and survival analysis.
We applied our protocol to 369 brain tumor patients (76 LGG, 293 HGG)
Unlike binWidth and image normalization, tumor subregion and imaging sequence significantly affected performance of the models.
arXiv Detail & Related papers (2022-07-29T16:37:46Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - A New Deep Hybrid Boosted and Ensemble Learning-based Brain Tumor
Analysis using MRI [0.28675177318965034]
Two-phase deep learning-based framework is proposed to detect and categorize brain tumors in magnetic resonance images (MRIs)
In the first phase, a novel deep boosted features and ensemble classifiers (DBF-EC) scheme is proposed to detect tumor MRI images from healthy individuals effectively.
In the second phase, a new hybrid features fusion-based brain tumor classification approach is proposed, comprised of dynamic-static feature and ML classifier to categorize different tumor types.
arXiv Detail & Related papers (2022-01-14T10:24:47Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - A multicenter study on radiomic features from T$_2$-weighted images of a
customized MR pelvic phantom setting the basis for robust radiomic models in
clinics [47.187609203210705]
2D and 3D T$$-weighted images of a pelvic phantom were acquired on three scanners.
repeatability and repositioning of radiomic features were assessed.
arXiv Detail & Related papers (2020-05-14T09:24:48Z) - Machine-Learning-Based Multiple Abnormality Prediction with Large-Scale
Chest Computed Tomography Volumes [64.21642241351857]
We curated and analyzed a chest computed tomography (CT) data set of 36,316 volumes from 19,993 unique patients.
We developed a rule-based method for automatically extracting abnormality labels from free-text radiology reports.
We also developed a model for multi-organ, multi-disease classification of chest CT volumes.
arXiv Detail & Related papers (2020-02-12T00:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.