Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation
- URL: http://arxiv.org/abs/2502.20772v1
- Date: Fri, 28 Feb 2025 06:46:21 GMT
- Title: Damper-B-PINN: Damper Characteristics-Based Bayesian Physics-Informed Neural Network for Vehicle State Estimation
- Authors: Tianyi Zeng, Tianyi Wang, Junfeng Jiao, Xinbo Chen,
- Abstract summary: We design a Damper characteristics-based Bayesian Physics-Informed Neural Network (Damper-B-PINN)<n>We introduce a neuron forward process inspired by the mechanical properties of dampers, which limits abrupt jumps in neuron values between epochs.<n>Physical information is incorporated into the loss function to serve as a physical prior for the neural network.
- Score: 2.9320640393913626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State estimation for Multi-Input Multi-Output (MIMO) systems with noise, such as vehicle chassis systems, presents a significant challenge due to the imperfect and complex relationship between inputs and outputs. To solve this problem, we design a Damper characteristics-based Bayesian Physics-Informed Neural Network (Damper-B-PINN). First, we introduce a neuron forward process inspired by the mechanical properties of dampers, which limits abrupt jumps in neuron values between epochs while maintaining search capability. Additionally, we apply an optimized Bayesian dropout layer to the MIMO system to enhance robustness against noise and prevent non-convergence issues. Physical information is incorporated into the loss function to serve as a physical prior for the neural network. The effectiveness of our Damper-B-PINN architecture is then validated across ten datasets and fourteen vehicle types, demonstrating superior accuracy, computational efficiency, and convergence in vehicle state estimation (i.e., dynamic wheel load) compared to other state-of-the-art benchmarks.
Related papers
- Modelling of Underwater Vehicles using Physics-Informed Neural Networks with Control [1.9343033692333778]
Physics-informed neural networks (PINNs) integrate physical laws with data-driven models to improve generalization and sample efficiency.
This work introduces an open-source implementation of the Physics-Informed Neural Network with Control framework, designed to model the dynamics of an underwater vehicle.
arXiv Detail & Related papers (2025-04-28T17:38:57Z) - Optical aberrations in autonomous driving: Physics-informed parameterized temperature scaling for neural network uncertainty calibration [49.03824084306578]
We propose to incorporate a physical inductive bias into the neural network calibration architecture to enhance the robustness and the trustworthiness of the AI target application.
We pave the way for a trustworthy uncertainty representation and for a holistic verification strategy of the perception chain.
arXiv Detail & Related papers (2024-12-18T10:36:46Z) - Hybrid Spiking Neural Networks for Low-Power Intra-Cortical Brain-Machine Interfaces [42.72938925647165]
Intra-cortical brain-machine interfaces (iBMIs) have the potential to dramatically improve the lives of people with paraplegia.
Current iBMIs suffer from scalability and mobility limitations due to bulky hardware and wiring.
We are investigating hybrid spiking neural networks for embedded neural decoding in wireless iBMIs.
arXiv Detail & Related papers (2024-09-06T17:48:44Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
We propose the Multi-Scale Physics-Constrained Neural Network (MSPCNN)
MSPCNN offers a novel methodology for incorporating data with different levels of fidelity into a unified latent space.
Unlike conventional methods, MSPCNN also manages to employ multi-fidelity data to train the predictive model.
arXiv Detail & Related papers (2024-02-03T05:05:26Z) - Efficient Bayesian inference using physics-informed invertible neural
networks for inverse problems [6.97393424359704]
We introduce an innovative approach for addressing Bayesian inverse problems through the utilization of physics-informed invertible neural networks (PI-INN)
The PI-INN offers a precise and efficient generative model for Bayesian inverse problems, yielding tractable posterior density estimates.
As a particular physics-informed deep learning model, the primary training challenge for PI-INN centers on enforcing the independence constraint.
arXiv Detail & Related papers (2023-04-25T03:17:54Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z) - A Hybrid Objective Function for Robustness of Artificial Neural Networks
-- Estimation of Parameters in a Mechanical System [0.0]
We consider the task of estimating parameters of a mechanical vehicle model based on acceleration profiles.
We introduce a convolutional neural network architecture that is capable to predict the parameters for a family of vehicle models that differ in the unknown parameters.
arXiv Detail & Related papers (2020-04-16T15:06:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.