Enhancing the coherence time of a neutral atom by an optical quartic trap
- URL: http://arxiv.org/abs/2502.20794v1
- Date: Fri, 28 Feb 2025 07:20:28 GMT
- Title: Enhancing the coherence time of a neutral atom by an optical quartic trap
- Authors: Haobo Chang, Zhuangzhuang Tian, Xin Lv, Mengna Yang, Zhihui Wang, Qi Guo, Pengfei Yang, Pengfei Zhang, Gang Li, Tiancai Zhang,
- Abstract summary: Coherence time of an optically trapped neutral atom is a crucial parameter for quantum technologies.<n>We formulated the decoherence rate caused by the variance of the differential energy shift and photon jumping rate.<n>We experimentally investigated the coherence time of a trapped single cesium atom.
- Score: 23.831187386634372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coherence time of an optically trapped neutral atom is a crucial parameter for quantum technologies. We found that optical dipole traps with higher-order spatial forms inherently offer lower decoherence rates compared to those with lower-order spatial forms. We formulated the decoherence rate caused by the variance of the differential energy shift and photon jumping rate. Then, we constructed blue-detuned harmonic and quartic optical dipole traps, and experimentally investigated the coherence time of a trapped single cesium atom. The experimental results qualitatively verified our theory. Our approach provides a novel method to enhance the coherence time of optically trapped neutral atoms.
Related papers
- Correlated relaxation and emerging entanglement in arrays of $Λ$-type atoms [83.88591755871734]
We show that the atomic entanglement emerges in the course of relaxation and persists in the final steady state of the system.
Our findings open a new way to engineer dissipation-induced entanglement.
arXiv Detail & Related papers (2024-11-11T08:39:32Z) - Lattice Light Shift Evaluations In a Dual-Ensemble Yb Optical Lattice Clock [11.209313504218509]
In state-of-the-art optical lattice clocks, beyond-electric-dipole polarizability terms lead to a break-down of magic wavelength trapping.
We report a novel approach to evaluate lattice light shifts, specifically addressing recent discrepancies in the atomic multipolarizability term between experimental techniques and theoretical calculations.
arXiv Detail & Related papers (2024-09-16T23:30:33Z) - Extending the coherence time limit of a single-alkali-atom qubit by suppressing phonon-jumping-induced decoherence [22.585565798915038]
Coherence time of qubit encoded in electronic states is one of the most important parameters.<n>Coherence time is assumed to be determined by relative stability of the energy between the electronic states.<n>We propose a complete description of the decoherence of a qubit encoded in two ground electronic states of an optically trapped alkali atom.
arXiv Detail & Related papers (2023-12-18T13:42:46Z) - Observation of mHz-level cooperative Lamb shifts in an optical atomic
clock [0.7095350526841508]
We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for state-of-the-art optical atomic clocks.
Our work demonstrates that such a clock is a novel platform for studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons.
arXiv Detail & Related papers (2023-03-09T23:04:46Z) - The Optical Signatures of Stochastic Processes in Many-Body Exciton
Scattering [5.090628201595126]
We show how direct (Coulomb) and exchange coupling to the bath give rise to distinct spectral signatures.
We discuss mathematical limits on inverting spectral signatures to extract the background density of states.
arXiv Detail & Related papers (2022-07-05T15:52:41Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Trapping Effects in Quantum Atomic Arrays [5.623221917573403]
We develop a microscopic quantum treatment using annihilation and creation operator of atoms in deep optical lattices.
We apply our method to study the trapping effect, which is beyond previous treatment with spin operators.
arXiv Detail & Related papers (2021-08-02T20:06:20Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Critical Theory for the Breakdown of Photon Blockade [0.0]
Photon blockade is the result of the interplay between the quantized nature of light and strong optical nonlinearities.
We theoretically study a single atom coupled to the light field.
We show that this transition is associated to the spontaneous breaking of an anti-unitary PT-symmetry.
arXiv Detail & Related papers (2020-06-10T01:09:21Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.