Quantum-assisted variational Monte Carlo
- URL: http://arxiv.org/abs/2502.20799v1
- Date: Fri, 28 Feb 2025 07:31:38 GMT
- Title: Quantum-assisted variational Monte Carlo
- Authors: Longfei Chang, Zhendong Li, Wei-Hai Fang,
- Abstract summary: We introduce a quantum-assisted variational Monte Carlo (QA-VMC) algorithm for solving the ground state of quantum many-body systems.<n>We demonstrate that the quantum-assisted proposal exhibits larger absolute spectral gaps and reduced autocorrelation times compared to conventional classical proposals.
- Score: 1.283555556182245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving the ground state of quantum many-body systems remains a fundamental challenge in physics and chemistry. Recent advancements in quantum hardware have opened new avenues for addressing this challenge. Inspired by the quantum-enhanced Markov chain Monte Carlo (QeMCMC) algorithm [Nature, 619, 282-287 (2023)], which was originally designed for sampling the Boltzmann distribution of classical spin models using quantum computers, we introduce a quantum-assisted variational Monte Carlo (QA-VMC) algorithm for solving the ground state of quantum many-body systems by adapting QeMCMC to sample the distribution of a (neural-network) wave function in VMC. The central question is whether such quantum-assisted proposal can potentially offer a computational advantage over classical methods. Through numerical investigations for the Fermi-Hubbard model and hydrogen chains, we demonstrate that the quantum-assisted proposal exhibits larger absolute spectral gaps and reduced autocorrelation times compared to conventional classical proposals, leading to more efficient sampling and faster convergence to the ground state in VMC as well as more accurate and precise estimation of physical observables. This advantage is especially pronounced for specific parameter ranges, where the ground-state configurations are more concentrated in some configurations separated by large Hamming distances. Our results underscore the potential of quantum-assisted algorithms to enhance classical variational methods for solving the ground state of quantum many-body systems.
Related papers
- Challenging the Quantum Advantage Frontier with Large-Scale Classical Simulations of Annealing Dynamics [0.0]
Recent demonstrations of D-Wave's quantum simulators have established new benchmarks for quantum computational advantage.
We demonstrate that time-dependent variational Monte Carlo can efficiently simulate quantum annealing of spin glasses up to system sizes.
arXiv Detail & Related papers (2025-03-11T10:09:37Z) - Quantum many-body simulation of finite-temperature systems with sampling a series expansion of a quantum imaginary-time evolution [0.0]
Quantum computers are expected to enable us to simulate large systems at finite temperatures.
We propose a method suitable for quantum devices in this early stage to calculate the thermal-equilibrium expectation value of an observable at finite temperatures.
arXiv Detail & Related papers (2024-09-11T07:38:46Z) - Quantum Dynamical Hamiltonian Monte Carlo [0.0]
A ubiquitous problem in machine learning is sampling from probability distributions that we only have access to via their log probability.
We extend the well-known Hamiltonian Monte Carlo (HMC) method for Chain Monte Carlo (MCMC) sampling to leverage quantum computation in a hybrid manner.
arXiv Detail & Related papers (2024-03-04T07:08:23Z) - Scalable Quantum Ground State Preparation of the Heisenberg Model: A
Variational Quantum Eigensolver Approach [0.0]
Variational Quantumsolver (VQE) algorithm is a system composed of a quantum circuit and a classical Eigenational Quantumsolver.
We present an ansatz capable of preparing the ground states for all possible values of the coupling, including the critical states for the anisotropic XXZ model.
arXiv Detail & Related papers (2023-08-23T09:26:34Z) - Accelerating variational quantum Monte Carlo using the variational
quantum eigensolver [0.0]
Variational Monte Carlo (VMC) methods are used to sample classically from distributions corresponding to quantum states.
We propose replacing this initial distribution with samples produced using a quantum computer.
arXiv Detail & Related papers (2023-07-15T05:45:55Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.