Can We Simplify Slide-level Fine-tuning of Pathology Foundation Models?
- URL: http://arxiv.org/abs/2502.20823v1
- Date: Fri, 28 Feb 2025 08:10:30 GMT
- Title: Can We Simplify Slide-level Fine-tuning of Pathology Foundation Models?
- Authors: Jiawen Li, Jiali Hu, Qiehe Sun, Renao Yan, Minxi Ouyang, Tian Guan, Anjia Han, Chao He, Yonghong He,
- Abstract summary: We present a key experimental finding: a simple nonlinear mapping strategy combining mean pooling and a multilayer perceptron, called SiMLP, can effectively adapt foundation models to slide-level tasks without complex MIL-based learning.<n>Our findings challenge the conventional MIL-based fine-tuning paradigm, demonstrating that a task-agnostic representation strategy alone can effectively adapt foundation models to WSI analysis.
- Score: 5.888444803253168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of foundation models in computational pathology has transformed histopathological image analysis, with whole slide imaging (WSI) diagnosis being a core application. Traditionally, weakly supervised fine-tuning via multiple instance learning (MIL) has been the primary method for adapting foundation models to WSIs. However, in this work we present a key experimental finding: a simple nonlinear mapping strategy combining mean pooling and a multilayer perceptron, called SiMLP, can effectively adapt patch-level foundation models to slide-level tasks without complex MIL-based learning. Through extensive experiments across diverse downstream tasks, we demonstrate the superior performance of SiMLP with state-of-the-art methods. For instance, on a large-scale pan-cancer classification task, SiMLP surpasses popular MIL-based methods by 3.52%. Furthermore, SiMLP shows strong learning ability in few-shot classification and remaining highly competitive with slide-level foundation models pretrained on tens of thousands of slides. Finally, SiMLP exhibits remarkable robustness and transferability in lung cancer subtyping. Overall, our findings challenge the conventional MIL-based fine-tuning paradigm, demonstrating that a task-agnostic representation strategy alone can effectively adapt foundation models to WSI analysis. These insights offer a unique and meaningful perspective for future research in digital pathology, paving the way for more efficient and broadly applicable methodologies.
Related papers
- Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - Foundation Models for Slide-level Cancer Subtyping in Digital Pathology [1.7641392161755438]
This work aims to compare the performance of various feature extractors developed under different pretraining strategies for cancer subtyping on WSI under a MIL framework.
Results demonstrate the ability of foundation models to surpass ImageNet-pretrained models for the prediction of six skin cancer subtypes.
arXiv Detail & Related papers (2024-10-21T11:04:58Z) - MM-UNet: A Mixed MLP Architecture for Improved Ophthalmic Image Segmentation [3.2846676620336632]
Ophthalmic image segmentation serves as a critical foundation for ocular disease diagnosis.
Transformer-based models address these limitations but introduce substantial computational overhead.
We introduce MM-UNet, an efficient Mixed model tailored for ophthalmic image segmentation.
arXiv Detail & Related papers (2024-08-16T08:34:50Z) - An efficient framework based on large foundation model for cervical cytopathology whole slide image screening [13.744580492120749]
We propose an efficient framework for cervical cytopathology WSI classification using only WSI-level labels through unsupervised and weakly supervised learning.
Experiments conducted on the CSD and FNAC 2019 datasets demonstrate that the proposed method enhances the performance of various MIL methods and achieves state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2024-07-16T08:21:54Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - AdvMIL: Adversarial Multiple Instance Learning for the Survival Analysis
on Whole-Slide Images [12.09957276418002]
We propose a novel adversarial multiple instance learning (AdvMIL) framework.
This framework is based on adversarial time-to-event modeling, and integrates the multiple instance learning (MIL) that is much necessary for WSI representation learning.
Our experiments show that AdvMIL not only could bring performance improvement to mainstream WSI survival analysis methods at a relatively low computational cost, but also enables these methods to effectively utilize unlabeled data via semi-supervised learning.
arXiv Detail & Related papers (2022-12-13T12:02:05Z) - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets [10.868779327544688]
Self-supervised learning has shown to be an effective method for utilizing unlabeled data.
We execute the largest-scale study of SSL pre-training on pathology image data.
For the first time, we apply SSL to the challenging task of nuclei instance segmentation.
arXiv Detail & Related papers (2022-12-09T06:38:34Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - On Data-Augmentation and Consistency-Based Semi-Supervised Learning [77.57285768500225]
Recently proposed consistency-based Semi-Supervised Learning (SSL) methods have advanced the state of the art in several SSL tasks.
Despite these advances, the understanding of these methods is still relatively limited.
arXiv Detail & Related papers (2021-01-18T10:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.