CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules
- URL: http://arxiv.org/abs/2411.11011v1
- Date: Sun, 17 Nov 2024 09:31:04 GMT
- Title: CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules
- Authors: Kunwei Lv,
- Abstract summary: Fire incidents in urban and forested areas pose serious threats.
We present CCi-YOLOv8n, an enhanced YOLOv8 model with targeted improvements for detecting small fires and smoke.
- Score: 0.0
- License:
- Abstract: Fire incidents in urban and forested areas pose serious threats,underscoring the need for more effective detection technologies. To address these challenges, we present CCi-YOLOv8n, an enhanced YOLOv8 model with targeted improvements for detecting small fires and smoke. The model integrates the CARAFE up-sampling operator and a context-guided module to reduce information loss during up-sampling and down-sampling, thereby retaining richer feature representations. Additionally, an inverted residual mobile block enhanced C2f module captures small targets and fine smoke patterns, a critical improvement over the original model's detection capacity.For validation, we introduce Web-Fire, a dataset curated for fire and smoke detection across diverse real-world scenarios. Experimental results indicate that CCi-YOLOv8n outperforms YOLOv8n in detection precision, confirming its effectiveness for robust fire detection tasks.
Related papers
- Adversarial Robustness for Deep Learning-based Wildfire Prediction Models [3.4528046839403905]
We introduce WARP, the first model-agnostic framework for evaluating the adversarial robustness of wildfire detection models.
WARP addresses limitations in smoke image diversity using global and local adversarial attack methods.
WARP's comprehensive robustness analysis contributed to the development of wildfire-specific data augmentation strategies.
arXiv Detail & Related papers (2024-12-28T04:06:29Z) - Fab-ME: A Vision State-Space and Attention-Enhanced Framework for Fabric Defect Detection [4.272401529389713]
We propose Fab-ME, an advanced framework based on YOLOv8s for accurate detection of 20 fabric defect types.
Our contributions include the introduction of the cross-stage partial bottleneck with two convolutions (C2F) vision state-space (C2F-VMamba) module.
Experimental results on the Tianchi fabric defect detection dataset demonstrate that Fab-ME achieves a 3.5% improvement in mAP@0.5 compared to the original YOLOv8s.
arXiv Detail & Related papers (2024-12-04T10:40:17Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - YOLO-ELA: Efficient Local Attention Modeling for High-Performance Real-Time Insulator Defect Detection [0.0]
Existing detection methods for insulator defect identification from unmanned aerial vehicles struggle with complex background scenes and small objects.
This paper proposes a new attention-based foundation architecture, YOLO-ELA, to address this issue.
Experimental results on high-resolution UAV images show that our method achieved a state-of-the-art performance of 96.9% mAP0.5 and a real-time detection speed of 74.63 frames per second.
arXiv Detail & Related papers (2024-10-15T16:00:01Z) - EFA-YOLO: An Efficient Feature Attention Model for Fire and Flame Detection [3.334973867478745]
We propose two key modules: EAConv (Efficient Attention Convolution) and EADown (Efficient Attention Downsampling)
Based on these two modules, we design an efficient and lightweight flame detection model, EFA-YOLO (Efficient Feature Attention YOLO)
EFA-YOLO exhibits a significant enhancement in detection accuracy (mAP) and inference speed, with model parameter amount is reduced by 94.6 and the inference speed is improved by 88 times.
arXiv Detail & Related papers (2024-09-19T10:20:07Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
Single-frame infrared small target (SIRST) detection aims to recognize small targets from clutter backgrounds.
With the development of Transformer, the scale of SIRST models is constantly increasing.
With a rich diversity of infrared small target data, our algorithm significantly improves the model performance and convergence speed.
arXiv Detail & Related papers (2024-03-08T16:14:54Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.