論文の概要: Measuring and identifying factors of individuals' trust in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.21028v1
- Date: Fri, 28 Feb 2025 13:16:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:07.170217
- Title: Measuring and identifying factors of individuals' trust in Large Language Models
- Title(参考訳): 大規模言語モデルにおける個人信頼要因の測定と同定
- Authors: Edoardo Sebastiano De Duro, Giuseppe Alessandro Veltri, Hudson Golino, Massimo Stella,
- Abstract要約: LLM(Large Language Models)は、人間のように見える会話の交換を行う。
LLMに対する個人の信頼度を測定する新しいフレームワークとして、TILLMI(Trust-In-LLMs Index)を紹介した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large Language Models (LLMs) can engage in human-looking conversational exchanges. Although conversations can elicit trust between users and LLMs, scarce empirical research has examined trust formation in human-LLM contexts, beyond LLMs' trustworthiness or human trust in AI in general. Here, we introduce the Trust-In-LLMs Index (TILLMI) as a new framework to measure individuals' trust in LLMs, extending McAllister's cognitive and affective trust dimensions to LLM-human interactions. We developed TILLMI as a psychometric scale, prototyped with a novel protocol we called LLM-simulated validity. The LLM-based scale was then validated in a sample of 1,000 US respondents. Exploratory Factor Analysis identified a two-factor structure. Two items were then removed due to redundancy, yielding a final 6-item scale with a 2-factor structure. Confirmatory Factor Analysis on a separate subsample showed strong model fit ($CFI = .995$, $TLI = .991$, $RMSEA = .046$, $p_{X^2} > .05$). Convergent validity analysis revealed that trust in LLMs correlated positively with openness to experience, extraversion, and cognitive flexibility, but negatively with neuroticism. Based on these findings, we interpreted TILLMI's factors as "closeness with LLMs" (affective dimension) and "reliance on LLMs" (cognitive dimension). Younger males exhibited higher closeness with- and reliance on LLMs compared to older women. Individuals with no direct experience with LLMs exhibited lower levels of trust compared to LLMs' users. These findings offer a novel empirical foundation for measuring trust in AI-driven verbal communication, informing responsible design, and fostering balanced human-AI collaboration.
- Abstract(参考訳): LLM(Large Language Models)は、人間のように見える会話の交換を行う。
ユーザとLLM間の信頼を引き出すことができるが、人間とLLMのコンテキストにおける信頼の形成は、LLMの信頼感やAI全般に対する人間的信頼以外には調査されていない。
本稿では,McAllisterの認知的信頼度と感情的信頼度をLLM-人間間相互作用に拡張する新たな枠組みとして,TILLMI(Trust-In-LLMs Index)を紹介した。
我々は、LLM-simulated validityと呼ばれる新しいプロトコルを用いて、サイコメトリック尺度としてTILLMIを開発した。
LLMベースの尺度は、1,000人の米国の回答者のサンプルで検証された。
探索的因子分析により2要素構造が同定された。
その後、冗長性により2つのアイテムが取り除かれ、2要素構造を持つ最後の6イテムスケールが得られた。
CFI = .995$, $TLI = .991$, $RMSEA = .046$, $p_{X^2} > .05$)。
コンバージェント妥当性分析の結果、LSMの信頼は経験、外向性、認知的柔軟性と正の相関を示したが、神経症と負の相関を示した。
これらの結果から,TILLMIの因子は「LLMとの近接性」と「LLMの信頼度」と解釈した。
若年男性では, 高齢女性に比べて, LLMとの密接度が高く, 依存度が高かった。
LLMの直接経験のない個人は、LLMのユーザに比べて信頼度が低い。
これらの発見は、AI駆動の言語コミュニケーションの信頼度を計測し、責任ある設計を通知し、バランスの取れた人間とAIのコラボレーションを促進するための、新しい経験的基盤を提供する。
関連論文リスト
- Cognitive phantoms in LLMs through the lens of latent variables [0.3441021278275805]
大規模言語モデル(LLM)はますます現実のアプリケーションに到達し、それらの振る舞いをよりよく理解する必要がある。
近年のLCMに対する心理測定調査では、LLMの人間らしい特徴が報告されており、潜在的に影響する可能性がある。
このアプローチは有効性の問題に悩まされており、これらの特性がLLMに存在し、人間用に設計されたツールで測定可能であることを前提としている。
本研究では,人間と3人のLDMの潜在的性格構造を2つの評価されたパーソナリティアンケートを用いて比較することにより,この問題を考察する。
論文 参考訳(メタデータ) (2024-09-06T12:42:35Z) - Do LLMs have Consistent Values? [27.58375296918161]
大規模言語モデル(LLM)技術は、人間のような対話に向けて常に改善されている。
価値は人間の行動の基礎となる基本的な推進力であるが、LLMによって生成されたテキストで表される価値を研究するための研究はほとんど行われていない。
我々は,LLMが,値のランク付けや値の相関など,人間で実証されたのと同じ値構造を示すかどうかを問う。
論文 参考訳(メタデータ) (2024-07-16T08:58:00Z) - Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance [73.19687314438133]
インタラクションの文脈的特徴が依存に与える影響について検討する。
文脈特性が人間の信頼行動に大きく影響していることが判明した。
これらの結果から,キャリブレーションと言語品質だけでは人間とLMの相互作用のリスクを評価するには不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-07-10T18:00:05Z) - LLM Internal States Reveal Hallucination Risk Faced With a Query [62.29558761326031]
人間は、クエリに直面したとき、私たちが知らないことを認識できる自己認識プロセスを持っています。
本稿では,大規模言語モデルが応答生成に先立って,自身の幻覚リスクを推定できるかどうかを検討する。
確率推定器により, LLM自己評価を利用して, 平均幻覚推定精度84.32%を達成する。
論文 参考訳(メタデータ) (2024-07-03T17:08:52Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - What Large Language Models Know and What People Think They Know [13.939511057660013]
大規模言語モデル(LLM)は意思決定プロセスに統合されつつある。
人間の信頼を得るためには、LSMは正確に評価し、正しい予測の可能性を伝達できるように、適切に校正されなければならない。
ここでは, LLM生成回答における人間の信頼度とモデルの実際の信頼度との差を示すキャリブレーションギャップと, 人間とモデルが正解と誤解をいかによく区別できるかを反映した識別ギャップについて検討する。
論文 参考訳(メタデータ) (2024-01-24T22:21:04Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
本稿では,大規模言語モデル(LLM)における信頼度に関する総合的研究であるTrustLLMを紹介する。
まず、8つの異なる次元にまたがる信頼性の高いLCMの原則を提案する。
これらの原則に基づいて、真理性、安全性、公正性、堅牢性、プライバシ、機械倫理を含む6つの次元にわたるベンチマークを確立します。
論文 参考訳(メタデータ) (2024-01-10T22:07:21Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Statistical Knowledge Assessment for Large Language Models [79.07989821512128]
ファクトイドの問題に関する様々なプロンプトを考慮すれば、大きな言語モデル(LLM)は事実的に正しい答えを確実に生成できるだろうか?
LLMの事実知識を評価する統計的手法であるKaRRを提案する。
この結果から,同じバックボーン構造を持つLLMの知識はスケーリング法則に則っており,命令追従データに基づくチューニングは,実際に正しいテキストを確実に生成するモデルの能力を損なう場合があることがわかった。
論文 参考訳(メタデータ) (2023-05-17T18:54:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。