Improving error suppression with noise-aware decoding
- URL: http://arxiv.org/abs/2502.21044v2
- Date: Tue, 01 Apr 2025 14:19:40 GMT
- Title: Improving error suppression with noise-aware decoding
- Authors: Evan T. Hockings, Andrew C. Doherty, Robin Harper,
- Abstract summary: We show that noise-aware decoding increases the error suppression factor of the surface code, yielding reductions in the logical error rate that increase exponentially with the code distance.<n>Our results indicate that these noise characterisation experiments could be performed and processed in seconds for superconducting quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate that the performance of quantum error correction can be improved with noise-aware decoders that are calibrated to the likelihood of physical error configurations in a device. We show that noise-aware decoding increases the error suppression factor of the surface code, yielding reductions in the logical error rate that increase exponentially with the code distance. Our calibration protocol involves circuit-level Pauli noise characterisation experiments with averaged circuit eigenvalue sampling. This enables decoder calibration at the scales required for fault-tolerant quantum computation and near-optimal decoding when compared to the true noise model. Our results indicate that these noise characterisation experiments could be performed and processed in seconds for superconducting quantum computers. This establishes the practicality and utility of noise-aware decoding for quantum error correction at scale.
Related papers
- Degenerate quantum erasure decoding [7.6119527195998025]
We show how to achieve near-capacity performance with explicit codes and efficient decoders.
We furthermore explore the potential of our decoders to handle other error models, such as mixed erasure and depolarizing errors.
arXiv Detail & Related papers (2024-11-20T18:02:05Z) - Near-optimal decoding algorithm for color codes using Population Annealing [44.99833362998488]
We implement a decoder that finds the recovery operation with the highest success probability.
We study the decoder performance on a 4.8.8 color code lattice under different noise models.
arXiv Detail & Related papers (2024-05-06T18:17:42Z) - Scalable noise characterization of syndrome-extraction circuits with averaged circuit eigenvalue sampling [0.0]
We develop a scalable noise characterisation protocol suited to characterising the syndrome extraction circuits of quantum error correcting codes.
Our results indicate that detailed noise characterisation methods are scalable to near-term quantum devices.
arXiv Detail & Related papers (2024-04-09T18:00:30Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
Large-scale, fault-tolerant quantum computations will be enabled by quantum error-correcting codes (QECC)
This work presents the first systematic technique to test the accuracy and effectiveness of different QECC decoding schemes.
arXiv Detail & Related papers (2023-11-21T10:22:08Z) - Quantum error correction with an Ising machine under circuit-level noise [0.4977217779934656]
We develop a decoder for circuit-level noise that solves the error estimation problems as Ising-type optimization problems.
We confirm that the threshold theorem in the surface code under the circuitlevel noise is reproduced with an error threshold of approximately 0.4%.
arXiv Detail & Related papers (2023-08-01T08:21:22Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Learning logical Pauli noise in quantum error correction [0.7264378254137809]
We focus on the characterization of quantum computers in the context of stabilizer quantum error correction.
For arbitrary stabilizer codes, subsystem codes, and data syndrome codes, we prove that the logical error channel induced by Pauli noise can be estimated from syndrome data under minimal conditions.
arXiv Detail & Related papers (2022-09-19T18:00:06Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Pauli channels can be estimated from syndrome measurements in quantum
error correction [0.7264378254137809]
We show that a stabilizer code can be used to estimate Pauli channels with correlations across a number of qubits given by the pure distance.
It also allows for measurement errors within the framework of quantum data-syndrome codes.
It is our hope that this work opens up interesting applications, such as the online adaptation of a decoder to time-varying noise.
arXiv Detail & Related papers (2021-07-29T18:01:10Z) - Efficiently computing logical noise in quantum error correcting codes [0.0]
We show that measurement errors on readout qubits manifest as a renormalization on the effective logical noise.
We derive general methods for reducing the computational complexity of the exact effective logical noise by many orders of magnitude.
arXiv Detail & Related papers (2020-03-23T19:40:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.