論文の概要: Synthesizing Individualized Aging Brains in Health and Disease with Generative Models and Parallel Transport
- arxiv url: http://arxiv.org/abs/2502.21049v1
- Date: Fri, 28 Feb 2025 13:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:03.890516
- Title: Synthesizing Individualized Aging Brains in Health and Disease with Generative Models and Parallel Transport
- Title(参考訳): 生成モデルと並列輸送を用いた健康・疾患における個別老化脳の合成
- Authors: Jingru Fu, Yuqi Zheng, Neel Dey, Daniel Ferreira, Rodrigo Moreno,
- Abstract要約: InBrainSynは、アルツハイマー病(AD)と正常な老化をシミュレートする高分解能被検者特異的MRIスキャンのためのフレームワークである。
InBrainSynは、並列トランスポートアルゴリズムを使用して、生成的な深層テンプレートネットワークによって学習された人口レベルの老化軌道に適応する。
全体としては、単一のベースラインスキャンだけで、InBrainSynは現実的な3D時間的T1w MRIスキャンを合成し、パーソナライズされた経年変化の軌跡を生成する。
- 参考スコア(独自算出の注目度): 3.43699245553078
- License:
- Abstract: Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain's current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, their ability to predict future aging trajectories for individuals remains limited, particularly in capturing subject-specific neuroanatomical variations over time. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework for synthesizing high-resolution subject-specific longitudinal MRI scans that simulate neurodegeneration in both Alzheimer's disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network, enabling individualized aging synthesis. As InBrainSyn uses diffeomorphic transformations to simulate aging, the synthesized images are topologically consistent with the original anatomy by design. We evaluated InBrainSyn both quantitatively and qualitatively on AD and healthy control cohorts from the Open Access Series of Imaging Studies - version 3 dataset. Experimentally, InBrainSyn can also model neuroanatomical transitions between normal aging and AD. An evaluation of an external set supports its generalizability. Overall, with only a single baseline scan, InBrainSyn synthesizes realistic 3D spatiotemporal T1w MRI scans, producing personalized longitudinal aging trajectories. The code for InBrainSyn is available at: https://github.com/Fjr9516/InBrainSyn.
- Abstract(参考訳): 特定の脳画像からの前方磁気共鳴画像(MRI)スキャンのシミュレーションは、脳の現況と特徴を考慮しつつ、加齢や疾患進行の標準的変化を考慮に入れる必要があるため、困難である。
現在の深層生成モデルでは、個体群全体を対象とした高精度な解剖学的テンプレートを作成できるが、将来の老化の軌跡を予測する能力は、特に時間とともに被検体固有の神経解剖学的変化を捉えている場合に限られている。
本研究では、アルツハイマー病(AD)と正常老化の両方において神経変性をシミュレートする高分解能被検体特異的縦型MRIスキャンを合成するためのフレームワークInBrainSynを紹介する。
InBrainSynは並列輸送アルゴリズムを用いて、生成的な深層テンプレートネットワークによって学習された集団レベルの老化軌道を適応し、個別化された老化合成を可能にする。
InBrainSynは微分同相変換を用いて老化をシミュレートするので、合成された画像は設計によって元の解剖学と位相的に一致している。
我々は、InBrainSynを、ADと健康管理コホートの両方で定量的、質的に評価し、Open Access Series of Imaging Studies - Version 3 データセットから評価した。
実験的に、InBrainSynは正常な老化とADの間の神経解剖学的遷移をモデル化することができる。
外部集合の評価は、その一般化性を支持する。
全体として、単一のベースラインスキャンのみで、InBrainSynは現実的な3次元時空間T1wMRIスキャンを合成し、パーソナライズされた経年変化の軌跡を生成する。
InBrainSynのコードは、https://github.com/Fjr9516/InBrainSynで入手できる。
関連論文リスト
- Explainable Brain Age Gap Prediction in Neurodegenerative Conditions using coVariance Neural Networks [94.06526659234756]
脳年齢差予測に対するブラックボックス機械学習アプローチは実用性に制限がある。
各種神経変性疾患に対する皮質厚み特徴を用いた脳年齢差の研究に,VNNに基づくアプローチを適用した。
以上の結果より,アルツハイマー病,前頭側頭型認知症,非定型パーキンソン病の脳年齢差の解剖学的特徴が明らかとなった。
論文 参考訳(メタデータ) (2025-01-02T19:37:09Z) - Enhancing Brain Age Estimation with a Multimodal 3D CNN Approach Combining Structural MRI and AI-Synthesized Cerebral Blood Volume Data [14.815462507141163]
脳年齢ギャップ推定(BrainAGE)は、脳年齢を理解するための神経画像バイオマーカーである。
現在のアプローチでは、主にT1強調MRI(T1w MRI)データを使用し、構造脳情報のみをキャプチャする。
我々は,VGGに基づくアーキテクチャを用いたディープラーニングモデルを開発し,線形回帰を用いた予測を組み合わせた。
我々のモデルは3.95年の平均絶対誤差(MAE)とテストセットの$R2$ 0.943を達成し、類似したデータでトレーニングされた既存のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-12-01T21:54:08Z) - SynthBA: Reliable Brain Age Estimation Across Multiple MRI Sequences and Resolutions [4.543154658281538]
脳年齢と時間年齢のギャップは、PAD(予測年齢差)と呼ばれ、神経変性の状況を調べるために利用されてきた。
脳年齢はMRIと機械学習技術を用いて予測できる。
我々は、脳年齢を予測するために設計された堅牢なディープラーニングモデル、Synthetic Brain Age(SynthBA)を紹介する。
論文 参考訳(メタデータ) (2024-06-01T08:58:40Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
脳の復号化は、獲得した脳信号から刺激を再構築することを目的としている。
現在、脳の復号化はモデルごとのオブジェクトごとのパラダイムに限られている。
我々は,1つのモデルのみを用いることで,オブジェクト間脳デコーディングを実現するMindBridgeを提案する。
論文 参考訳(メタデータ) (2024-04-11T15:46:42Z) - SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People [0.49478969093606673]
合成長手脳MRIは、脳の老化をシミュレートし、神経発達と神経変性の条件についてより効率的な研究を可能にする。
人工脳老化のための拡散型アプローチであるSynthBrainGrowを2年連続で提案する。
以上の結果から,SynthBrainGrowは細部構造を正確に把握し,心室拡張や大脳皮質の薄化などの構造変化をシミュレートできることがわかった。
論文 参考訳(メタデータ) (2024-02-22T20:47:40Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
時間的年齢に関する脳年齢の増加は、神経変性と認知低下に対する脆弱性の増加を反映している。
NeuroVNNは、時系列年齢を予測するために、健康な人口の回帰モデルとして事前訓練されている。
NeuroVNNは、脳の年齢に解剖学的解釈性を加え、任意の脳のアトラスに従って計算されたデータセットへの転移を可能にする「スケールフリー」特性を持つ。
論文 参考訳(メタデータ) (2024-02-12T14:46:31Z) - Metadata-Conditioned Generative Models to Synthesize
Anatomically-Plausible 3D Brain MRIs [12.492451825171408]
本稿では, メタデータ条件付きMRI(例えば, 年齢, 性別別MRI)を合成するための新しい生成モデルであるBrain Synthを提案する。
以上の結果から, 合成MRIの脳領域の半数以上が解剖学的に正確であり, 実際のMRIと合成MRIの差は小さいことが示唆された。
われわれの合成MRIは畳み込みニューラルネットワークのトレーニングを大幅に改善し、加速度的老化効果を同定する。
論文 参考訳(メタデータ) (2023-10-07T00:05:47Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。