論文の概要: HoloMine: A Synthetic Dataset for Buried Landmines Recognition using Microwave Holographic Imaging
- arxiv url: http://arxiv.org/abs/2502.21054v1
- Date: Fri, 28 Feb 2025 13:53:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:40:25.977518
- Title: HoloMine: A Synthetic Dataset for Buried Landmines Recognition using Microwave Holographic Imaging
- Title(参考訳): HoloMine:マイクロ波ホログラフィーによる埋立地雷認識のための合成データセット
- Authors: Emanuele Vivoli, Lorenzo Capineri, Marco Bertini,
- Abstract要約: 本稿では,埋設地雷検出のための新しい合成データセットを提案する。
データセットは、41,800個のマイクロ波ホログラフィック画像(2D)と、さまざまな種類の埋没物体のホログラフィック反転スキャン(3D)で構成されている。
各種分類タスクのための合成データセットを用いて学習したいくつかの最先端ディープラーニングモデルの性能評価を行った。
- 参考スコア(独自算出の注目度): 6.431432627253589
- License:
- Abstract: The detection and removal of landmines is a complex and risky task that requires advanced remote sensing techniques to reduce the risk for the professionals involved in this task. In this paper, we propose a novel synthetic dataset for buried landmine detection to provide researchers with a valuable resource to observe, measure, locate, and address issues in landmine detection. The dataset consists of 41,800 microwave holographic images (2D) and their holographic inverted scans (3D) of different types of buried objects, including landmines, clutter, and pottery objects, and is collected by means of a microwave holography sensor. We evaluate the performance of several state-of-the-art deep learning models trained on our synthetic dataset for various classification tasks. While the results do not yield yet high performances, showing the difficulty of the proposed task, we believe that our dataset has significant potential to drive progress in the field of landmine detection thanks to the accuracy and resolution obtainable using holographic radars. To the best of our knowledge, our dataset is the first of its kind and will help drive further research on computer vision methods to automatize mine detection, with the overall goal of reducing the risks and the costs of the demining process.
- Abstract(参考訳): 地雷の検出と除去は、この作業に関わる専門家のリスクを軽減するために高度なリモートセンシング技術を必要とする複雑でリスクの高い作業である。
本稿では,埋設地雷検出のための新しい合成データセットを提案し,地雷検出の問題点を観測,測定,発見,解決するための貴重な資源を研究者に提供する。
このデータセットは、41,800個のマイクロ波ホログラフィー画像(2D)と、地雷、クラッタ、陶器などの埋没物体のホログラフィー逆スキャン(3D)で構成され、マイクロ波ホログラフィーセンサーを用いて収集される。
各種分類タスクのための合成データセットを用いて学習したいくつかの最先端ディープラーニングモデルの性能評価を行った。
この結果から,提案課題の難易度を示す結果が得られなかったが,我々のデータセットは,ホログラフィックレーダを用いて得られる精度と解像度により,地雷検出分野の進展を推し進める大きな可能性を秘めていると考えられる。
私たちの知る限りでは、私たちのデータセットはこの種の最初のものであり、マイニングプロセスのリスクとコストを削減することを目的として、マイニング検出を自動化するためのコンピュータビジョン手法のさらなる研究を促進するのに役立つでしょう。
関連論文リスト
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
本稿では,地球モニタリングタスクにおける深層学習アプリケーションを強化することを目的とした,リモートセンシングデータの自己監督を目的としたデータセットを提案する。
このデータセットは15テラピクセルのグローバルリモートセンシングデータにまたがっており、NEON、Sentinel、Satellogicによる1mの空間解像度データの新たなリリースなど、さまざまなソースの画像を組み合わせている。
このデータセットは、リモートセンシングデータの異なる課題に取り組むために開発されたMasked Autoencoderである。
論文 参考訳(メタデータ) (2025-01-14T13:42:22Z) - SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining
Environments: A Novel Dataset and ROS-Based Automatic Annotation Pipeline [0.9790236766474201]
鉱業環境における3次元物体検出に特化して設計された合成データセットSimMining 3Dを提案する。
このデータセットは、鉱山のベンチ内のさまざまな高さに位置する物体やセンサーを捉え、正確な採掘シナリオを正確に反映している。
本研究では,センサ対オブジェクトの高さ変化と点雲密度を考慮した評価指標を提案し,正確なモデル評価を可能にする。
論文 参考訳(メタデータ) (2023-12-11T04:33:45Z) - An empirical study of automatic wildlife detection using drone thermal
imaging and object detection [6.179033141934765]
遠隔操縦航空機システム(RPASまたはドローン')や熱画像技術の最近の進歩は、野生生物のデータを収集するための新しいアプローチを生み出している。
ドローンによる野生生物検出に関する総合的なレビューと実証研究を行っている。
論文 参考訳(メタデータ) (2023-10-17T13:22:59Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
本研究は,ターゲットイベントの検出のためのデータセット作成を自動化する新しい手法を提案する。
提案手法は、まず、空間帯域登録とジオレファレンスからなるパイプラインを適用することにより、生データを処理する。
Level-1C製品上で、イベント固有の最先端アルゴリズムを活用することで、ターゲットイベントを検出する。
本研究では,温熱ホットスポットを含むSentinel-2生データの最初のデータセットであるTHRawS (Thermal Hotspots in Raw Sentinel-2 data) を実現するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-05-12T09:54:21Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
近年の深層学習の急速な発展は,産業用画像異常検出(IAD)のマイルストーンとなった
本稿では,ディープラーニングによる画像異常検出手法の総合的なレビューを行う。
画像異常検出のオープニング課題をいくつか取り上げる。
論文 参考訳(メタデータ) (2023-01-27T03:18:09Z) - LiDAR-guided object search and detection in Subterranean Environments [12.265807098187297]
この研究は、視覚と深度センサーの相補的な性質を利用して、より長距離での物体検出を支援するマルチモーダル情報を活用する。
提案された研究は、DARPA Subterranean Challengeのファイナルで収集されたデータセットに基づいて、地下の環境でANYmalの四足歩行ロボットを用いて徹底的に検証されている。
論文 参考訳(メタデータ) (2022-10-26T19:38:19Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
本研究では,情報,安全,解釈可能な地図作成と計画に3次元シーン補完を活用することによって,深層学習を探索に統合する新しい手法を提案する。
本手法は,地図の精度を最小限に抑えることで,ベースラインに比べて環境のカバレッジを73%高速化できることを示す。
最終地図にシーン完了が含まれていなくても、ロボットがより情報的な経路を選択するように誘導し、ロボットのセンサーでシーンの測定を35%高速化できることが示される。
論文 参考訳(メタデータ) (2022-08-17T14:19:33Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
本稿では,ハズフリー画像とその場でのハズ密度測定を併用した,最初の実画像ベンチマークデータセットを提案する。
このデータセットはコントロールされた環境で生成され、プロの煙発生装置がシーン全体を覆っている。
このデータセットのサブセットは、CVPR UG2 2022 チャレンジの Haze Track における Object Detection に使用されている。
論文 参考訳(メタデータ) (2022-06-13T19:14:06Z) - A review of machine learning in processing remote sensing data for
mineral exploration [0.41998444721319217]
本稿では,最近確立したリモートセンシングデータ処理のための機械学習手法の実装と適応について概説する。
異なる鉱床の探査への応用について研究している。
論文 参考訳(メタデータ) (2021-03-13T10:36:25Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。