HoloMine: A Synthetic Dataset for Buried Landmines Recognition using Microwave Holographic Imaging
- URL: http://arxiv.org/abs/2502.21054v1
- Date: Fri, 28 Feb 2025 13:53:35 GMT
- Title: HoloMine: A Synthetic Dataset for Buried Landmines Recognition using Microwave Holographic Imaging
- Authors: Emanuele Vivoli, Lorenzo Capineri, Marco Bertini,
- Abstract summary: In this paper, we propose a novel synthetic dataset for buried landmine detection.<n>The dataset consists of 41,800 microwave holographic images (2D) and their holographic inverted scans (3D) of different types of buried objects.<n>We evaluate the performance of several state-of-the-art deep learning models trained on our synthetic dataset for various classification tasks.
- Score: 6.431432627253589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection and removal of landmines is a complex and risky task that requires advanced remote sensing techniques to reduce the risk for the professionals involved in this task. In this paper, we propose a novel synthetic dataset for buried landmine detection to provide researchers with a valuable resource to observe, measure, locate, and address issues in landmine detection. The dataset consists of 41,800 microwave holographic images (2D) and their holographic inverted scans (3D) of different types of buried objects, including landmines, clutter, and pottery objects, and is collected by means of a microwave holography sensor. We evaluate the performance of several state-of-the-art deep learning models trained on our synthetic dataset for various classification tasks. While the results do not yield yet high performances, showing the difficulty of the proposed task, we believe that our dataset has significant potential to drive progress in the field of landmine detection thanks to the accuracy and resolution obtainable using holographic radars. To the best of our knowledge, our dataset is the first of its kind and will help drive further research on computer vision methods to automatize mine detection, with the overall goal of reducing the risks and the costs of the demining process.
Related papers
- EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.<n>The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.<n>Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - SimMining-3D: Altitude-Aware 3D Object Detection in Complex Mining
Environments: A Novel Dataset and ROS-Based Automatic Annotation Pipeline [0.9790236766474201]
We introduce a synthetic dataset SimMining 3D specifically designed for 3D object detection in mining environments.
The dataset captures objects and sensors positioned at various heights within mine benches, accurately reflecting authentic mining scenarios.
We propose evaluation metrics accounting for sensor-to-object height variations and point cloud density, enabling accurate model assessment.
arXiv Detail & Related papers (2023-12-11T04:33:45Z) - An empirical study of automatic wildlife detection using drone thermal
imaging and object detection [6.179033141934765]
Recent advances in remotely piloted aircraft systems (RPAS or drones'') and thermal imaging technology have created new approaches to collect wildlife data.
We conduct a comprehensive review and empirical study of drone-based wildlife detection.
arXiv Detail & Related papers (2023-10-17T13:22:59Z) - Unlocking the Use of Raw Multispectral Earth Observation Imagery for Onboard Artificial Intelligence [3.3810628880631226]
This work presents a novel methodology to automate the creation of datasets for the detection of target events.
The presented approach first processes the raw data by applying a pipeline consisting of spatial band registration and georeferencing.
It detects the target events by leveraging event-specific state-of-the-art algorithms on the Level-1C products.
We apply the proposed methodology to realize THRawS (Thermal Hotspots in Raw Sentinel-2 data), the first dataset of Sentinel-2 raw data containing warm thermal hotspots.
arXiv Detail & Related papers (2023-05-12T09:54:21Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Deep Industrial Image Anomaly Detection: A Survey [85.44223757234671]
Recent rapid development of deep learning has laid a milestone in industrial Image Anomaly Detection (IAD)
In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques.
We highlight several opening challenges for image anomaly detection.
arXiv Detail & Related papers (2023-01-27T03:18:09Z) - LiDAR-guided object search and detection in Subterranean Environments [12.265807098187297]
This work utilizes the complementary nature of vision and depth sensors to leverage multi-modal information to aid object detection at longer distances.
The proposed work has been thoroughly verified using an ANYmal quadruped robot in underground settings and on datasets collected during the DARPA Subterranean Challenge finals.
arXiv Detail & Related papers (2022-10-26T19:38:19Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - A Multi-purpose Real Haze Benchmark with Quantifiable Haze Levels and
Ground Truth [61.90504318229845]
This paper introduces the first paired real image benchmark dataset with hazy and haze-free images, and in-situ haze density measurements.
This dataset was produced in a controlled environment with professional smoke generating machines that covered the entire scene.
A subset of this dataset has been used for the Object Detection in Haze Track of CVPR UG2 2022 challenge.
arXiv Detail & Related papers (2022-06-13T19:14:06Z) - A review of machine learning in processing remote sensing data for
mineral exploration [0.41998444721319217]
This paper reviews the implementation and adaptation of some popular and recently established machine learning methods for remote sensing data processing.
It investigates their applications for exploring different ore deposits.
arXiv Detail & Related papers (2021-03-13T10:36:25Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.