Are foundation models useful feature extractors for electroencephalography analysis?
- URL: http://arxiv.org/abs/2502.21086v1
- Date: Fri, 28 Feb 2025 14:21:34 GMT
- Title: Are foundation models useful feature extractors for electroencephalography analysis?
- Authors: Özgün Turgut, Felix S. Bott, Markus Ploner, Daniel Rueckert,
- Abstract summary: We investigate the effectiveness of foundation models in medical time series analysis involving electroencephalography (EEG)<n>Our analysis shows that foundation models extract meaningful EEG features, outperform specialised models even without domain adaptation, and localise task-specific biomarkers.
- Score: 9.413178499853156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of foundation models in natural language processing and computer vision has motivated similar approaches for general time series analysis. While these models are effective for a variety of tasks, their applicability in medical domains with limited data remains largely unexplored. To address this, we investigate the effectiveness of foundation models in medical time series analysis involving electroencephalography (EEG). Through extensive experiments on tasks such as age prediction, seizure detection, and the classification of clinically relevant EEG events, we compare their diagnostic accuracy with that of specialised EEG models. Our analysis shows that foundation models extract meaningful EEG features, outperform specialised models even without domain adaptation, and localise task-specific biomarkers. Moreover, we demonstrate that diagnostic accuracy is substantially influenced by architectural choices such as context length. Overall, our study reveals that foundation models with general time series understanding eliminate the dependency on large domain-specific datasets, making them valuable tools for clinical practice.
Related papers
- Investigating Zero-Shot Diagnostic Pathology in Vision-Language Models with Efficient Prompt Design [7.509731425152396]
We present a systematic investigation and analysis of three state of the art vision-language models (VLMs) for histopathology.
We develop a comprehensive prompt engineering framework that systematically varies domain specificity, anatomical precision, instructional framing, and output constraints.
Our findings demonstrate that prompt engineering significantly impacts model performance, with the CONCH model achieving the highest accuracy when provided with precise anatomical references.
arXiv Detail & Related papers (2025-04-30T19:01:06Z) - The use of Multi-domain Electroencephalogram Representations in the building of Models based on Convolutional and Recurrent Neural Networks for Epilepsy Detection [1.4785447770765987]
Epilepsy affects approximately 50 million people globally and remains challenging to treat.
EEG data is prone to variability between experts, emphasizing the need for automated solutions.
This work systematically compares deep neural networks trained on EEG data in time, frequency, and time-frequency domains.
Results demonstrate that frequency-domain data achieves detection metrics exceeding 97%, providing a robust foundation for more accurate and reliable seizure detection systems.
arXiv Detail & Related papers (2025-04-24T19:50:48Z) - Evaluating Vision Language Models (VLMs) for Radiology: A Comprehensive Analysis [4.803310914375717]
This study evaluates three vision-language foundation models (RAD-DINO, CheXagent, and BiomedCLIP) on their ability to capture fine-grained imaging features for radiology tasks.
The models were assessed across classification, segmentation, and regression tasks for pneumothorax and cardiomegaly on chest radiographs.
arXiv Detail & Related papers (2025-04-22T17:20:34Z) - Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography.
It focuses on COVID-19, lung opacity, and viral pneumonia.
The results aim to inform the integration of AI-driven diagnostic tools in clinical practice.
arXiv Detail & Related papers (2025-04-16T16:54:37Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
We show how architectural and framework biases combine to influence model performance.<n>Experiments show imputation performance variations of up to 20% based on preprocessing and implementation choices.<n>We identify critical gaps between current deep imputation methods and medical requirements.
arXiv Detail & Related papers (2024-07-11T12:33:28Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.<n>A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.<n>This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Exploration of the Rashomon Set Assists Trustworthy Explanations for
Medical Data [4.499833362998488]
This paper introduces a novel process to explore models in the Rashomon set, extending the conventional modeling approach.
We propose the $textttRashomon_DETECT$ algorithm to detect models with different behavior.
To quantify differences in variable effects among models, we introduce the Profile Disparity Index (PDI) based on measures from functional data analysis.
arXiv Detail & Related papers (2023-08-22T13:53:43Z) - Ensembling Handcrafted Features with Deep Features: An Analytical Study
for Classification of Routine Colon Cancer Histopathological Nuclei Images [13.858624044986815]
We have used F1-measure, Precision, Recall, AUC, and Cross-Entropy Loss to analyse the performance of our approaches.
We observed from the results that the DL features ensemble bring a marked improvement in the overall performance of the model.
arXiv Detail & Related papers (2022-02-22T06:48:50Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.