AuthSim: Towards Authentic and Effective Safety-critical Scenario Generation for Autonomous Driving Tests
- URL: http://arxiv.org/abs/2502.21100v1
- Date: Fri, 28 Feb 2025 14:38:35 GMT
- Title: AuthSim: Towards Authentic and Effective Safety-critical Scenario Generation for Autonomous Driving Tests
- Authors: Yukuan Yang, Xucheng Lu, Zhili Zhang, Zepeng Wu, Guoqi Li, Lingzhong Meng, Yunzhi Xue,
- Abstract summary: We propose a three-layer relative safety region model, which partitions the area based on danger levels and increases the likelihood of NPC vehicles entering relative boundary regions.<n>This model directs NPC vehicles to engage in adversarial actions within relatively safe boundary regions, thereby augmenting the scenarios' authenticity.<n>We introduce AuthSim, a comprehensive platform for generating authentic and effective safety-critical scenarios.
- Score: 18.814993626601193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating adversarial safety-critical scenarios is a pivotal method for testing autonomous driving systems, as it identifies potential weaknesses and enhances system robustness and reliability. However, existing approaches predominantly emphasize unrestricted collision scenarios, prompting non-player character (NPC) vehicles to attack the ego vehicle indiscriminately. These works overlook these scenarios' authenticity, rationality, and relevance, resulting in numerous extreme, contrived, and largely unrealistic collision events involving aggressive NPC vehicles. To rectify this issue, we propose a three-layer relative safety region model, which partitions the area based on danger levels and increases the likelihood of NPC vehicles entering relative boundary regions. This model directs NPC vehicles to engage in adversarial actions within relatively safe boundary regions, thereby augmenting the scenarios' authenticity. We introduce AuthSim, a comprehensive platform for generating authentic and effective safety-critical scenarios by integrating the three-layer relative safety region model with reinforcement learning. To our knowledge, this is the first attempt to address the authenticity and effectiveness of autonomous driving system test scenarios comprehensively. Extensive experiments demonstrate that AuthSim outperforms existing methods in generating effective safety-critical scenarios. Notably, AuthSim achieves a 5.25% improvement in average cut-in distance and a 27.12% enhancement in average collision interval time, while maintaining higher efficiency in generating effective safety-critical scenarios compared to existing methods. This underscores its significant advantage in producing authentic scenarios over current methodologies.
Related papers
- Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios [30.413293630867418]
Current evaluations of autonomous driving are typically conducted in natural driving scenarios.
Many accidents often occur in edge cases, also known as safety-critical scenarios.
There is currently no clear definition of what constitutes a safety-critical scenario.
arXiv Detail & Related papers (2025-03-31T04:13:32Z) - CRASH: Challenging Reinforcement-Learning Based Adversarial Scenarios For Safety Hardening [16.305837225117607]
This paper introduces CRASH - Challenging Reinforcement-learning based Adversarial scenarios for Safety Hardening.
First CRASH can control adversarial Non Player Character (NPC) agents in an AV simulator to automatically induce collisions with the Ego vehicle.
We also propose a novel approach, that we term safety hardening, which iteratively refines the motion planner by simulating improvement scenarios against adversarial agents.
arXiv Detail & Related papers (2024-11-26T00:00:27Z) - Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
Large Language Models (LLMs) have shown promise in autonomous driving.
This paper introduces a framework for generating diverse Out-Of-Distribution (OOD) driving scenarios.
We evaluate our framework through extensive simulations and introduce a new "OOD-ness" metric.
arXiv Detail & Related papers (2024-11-25T16:38:17Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
Machine learning based autonomous driving systems often face challenges with safety-critical scenarios that are rare in real-world data.
This work explores generating safety-critical driving scenarios by modifying complex real-world regular scenarios through trajectory optimization.
Our approach addresses unrealistic diverging trajectories and unavoidable collision scenarios that are not useful for training robust planner.
arXiv Detail & Related papers (2024-09-12T08:26:33Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
This research addresses the safety issue in the control optimization problem of autonomous driving.
We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic.
Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios.
arXiv Detail & Related papers (2024-07-08T18:32:40Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure
Events [1.84926694477846]
We propose a black-box testing framework that uses offline trajectories first to analyze the existing behavior of autonomous vehicles.
Our experiment shows an increase in 35, 23, 48, and 50% in the occurrences of vehicle collision, road object collision, pedestrian collision, and offroad steering events.
arXiv Detail & Related papers (2023-08-28T13:09:00Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z) - Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios [10.53961877853783]
We propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments.
Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity.
Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles.
arXiv Detail & Related papers (2020-04-14T14:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.