論文の概要: Rare event modeling with self-regularized normalizing flows: what can we learn from a single failure?
- arxiv url: http://arxiv.org/abs/2502.21110v1
- Date: Fri, 28 Feb 2025 14:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:45.954808
- Title: Rare event modeling with self-regularized normalizing flows: what can we learn from a single failure?
- Title(参考訳): 自己規則化された正規化フローによる希少なイベントモデリング:単一障害から何を学ぶことができるのか?
- Authors: Charles Dawson, Van Tran, Max Z. Li, Chuchu Fan,
- Abstract要約: 本稿では,限られたデータから後進学習を行うフレームワークであるCalNFを紹介する。
データ制限された障害モデリングと逆問題に対して、最先端のパフォーマンスを実現する。
2022年のサウスウエスト航空のスケジュール危機の根本原因について、先進的なケーススタディを可能にする。
- 参考スコア(独自算出の注目度): 10.460029312784911
- License:
- Abstract: Increased deployment of autonomous systems in fields like transportation and robotics have seen a corresponding increase in safety-critical failures. These failures can be difficult to model and debug due to the relative lack of data: compared to tens of thousands of examples from normal operations, we may have only seconds of data leading up to the failure. This scarcity makes it challenging to train generative models of rare failure events, as existing methods risk either overfitting to noise in the limited failure dataset or underfitting due to an overly strong prior. We address this challenge with CalNF, or calibrated normalizing flows, a self-regularized framework for posterior learning from limited data. CalNF achieves state-of-the-art performance on data-limited failure modeling and inverse problems and enables a first-of-a-kind case study into the root causes of the 2022 Southwest Airlines scheduling crisis.
- Abstract(参考訳): 輸送やロボティクスなどの分野における自律システムの展開の増加は、安全クリティカルな障害の増加に対応している。
これらの障害は、データの相対的な欠如のために、モデル化とデバッグが難しい場合があります。
既存のメソッドは、限られた障害データセットのノイズに過度に適合するか、過度に強い事前処理のために過度に適合する可能性がある。
この課題は、限られたデータから後進学習を行うための自己正規化フレームワークであるCalNF(Calbrated normalizing Flow)を用いて解決する。
CalNFは、データ制限障害モデリングと逆問題に関する最先端のパフォーマンスを達成し、2022年のサウスウエスト航空のスケジュール危機の根本原因に関する第一種事例研究を可能にする。
関連論文リスト
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
本稿では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための戦略を提案する。
トレーニングで見られるデータより30倍以上長い時間的地平線上での異方性統計を正確に予測する能力を示す。
論文 参考訳(メタデータ) (2024-08-02T18:34:30Z) - Root Causing Prediction Anomalies Using Explainable AI [3.970146574042422]
本稿では,機械学習モデルにおける根源的性能劣化に対する説明可能なAI(XAI)の新たな応用法を提案する。
単一機能の破損は、カスケード機能、ラベル、コンセプトドリフトを引き起こす可能性がある。
我々は、パーソナライズされた広告に使用されるモデルの信頼性を向上させるために、この手法をうまく応用した。
論文 参考訳(メタデータ) (2024-03-04T19:38:50Z) - Identifying and Mitigating Model Failures through Few-shot CLIP-aided
Diffusion Generation [65.268245109828]
本稿では,突発的相関に付随する障害モードのテキスト記述を生成するためのエンドツーエンドフレームワークを提案する。
これらの記述は拡散モデルのような生成モデルを用いて合成データを生成するのに使うことができる。
本実験では, ハードサブポピュレーションの精度(sim textbf21%$)が著しく向上した。
論文 参考訳(メタデータ) (2023-12-09T04:43:49Z) - DeepFT: Fault-Tolerant Edge Computing using a Self-Supervised Deep
Surrogate Model [12.335763358698564]
本稿では,システム過負荷とその悪影響を積極的に回避するためにDeepFTを提案する。
DeepFTは、システム内の障害を正確に予測し、診断するために、ディープサロゲートモデルを使用している。
モデルのサイズが1ユニットあたりわずか3~1%のスケールで、アクティブなタスクやホストの数が増えるため、非常にスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2022-12-02T16:51:58Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Repairing Neural Networks by Leaving the Right Past Behind [23.78437548836594]
機械学習モデルの予測失敗は、トレーニングデータの欠陥から生じることが多い。
この研究は、目標とする障害を発生させたトレーニング例を特定し、それらに関する情報を消去することでモデルを修正するための一般的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-07-11T12:07:39Z) - Distilling Model Failures as Directions in Latent Space [87.30726685335098]
本稿では,モデルの故障モードを自動的に抽出するスケーラブルな方法を提案する。
線形分類器を用いて一貫したエラーパターンを識別し、これらの障害モードを特徴空間内の方向として自然な表現を誘導する。
このフレームワークにより、トレーニングデータセット内の課題のあるサブポピュレーションを発見し、自動的にキャプションし、これらのサブポピュレーションにおけるモデルのパフォーマンスを改善することができることを示す。
論文 参考訳(メタデータ) (2022-06-29T16:35:24Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
本稿では,誤りシミュレーションエンジンを用いて,コナールニューラルネットワーク(CNN)の信頼性解析のためのフレームワークを提案する。
これらの誤差モデルは、故障によって誘導されるCNN演算子の出力の破損パターンに基づいて定義される。
提案手法は,SASSIFIの欠陥効果の約99%の精度と,限定的なエラーモデルのみを実装した44倍から63倍までのスピードアップを実現する。
論文 参考訳(メタデータ) (2022-06-04T19:45:02Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Robot Learning with Crash Constraints [37.685515446816105]
失敗が望ましくないが破滅的でないロボットアプリケーションでは、多くのアルゴリズムは失敗から得られたデータを活用するのに苦労する。
これは通常、(i)失敗した実験が早めに終了すること、または(ii)取得したデータが不足または破損することによって引き起こされる。
我々は、失敗する振る舞いを制約に違反し、クラッシュ制約で学習する問題に対処するものとみなす。
論文 参考訳(メタデータ) (2020-10-16T23:56:35Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。