論文の概要: A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data
- arxiv url: http://arxiv.org/abs/2408.02688v2
- Date: Fri, 22 Nov 2024 17:59:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:13:45.036472
- Title: A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data
- Title(参考訳): 短時間学習データを用いた長期気候シミュレーションにおける非侵入的補正学習のための確率的枠組み
- Authors: Benedikt Barthel Sorensen, Leonardo Zepeda-Núñez, Ignacio Lopez-Gomez, Zhong Yi Wan, Rob Carver, Fei Sha, Themistoklis Sapsis,
- Abstract要約: 本稿では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための戦略を提案する。
トレーニングで見られるデータより30倍以上長い時間的地平線上での異方性統計を正確に予測する能力を示す。
- 参考スコア(独自算出の注目度): 12.566163525039558
- License:
- Abstract: Chaotic systems, such as turbulent flows, are ubiquitous in science and engineering. However, their study remains a challenge due to the large range scales, and the strong interaction with other, often not fully understood, physics. As a consequence, the spatiotemporal resolution required for accurate simulation of these systems is typically computationally infeasible, particularly for applications of long-term risk assessment, such as the quantification of extreme weather risk due to climate change. While data-driven modeling offers some promise of alleviating these obstacles, the scarcity of high-quality simulations results in limited available data to train such models, which is often compounded by the lack of stability for long-horizon simulations. As such, the computational, algorithmic, and data restrictions generally imply that the probability of rare extreme events is not accurately captured. In this work we present a general strategy for training neural network models to non-intrusively correct under-resolved long-time simulations of chaotic systems. The approach is based on training a post-processing correction operator on under-resolved simulations nudged towards a high-fidelity reference. This enables us to learn the dynamics of the underlying system directly, which allows us to use very little training data, even when the statistics thereof are far from converged. Additionally, through the use of probabilistic network architectures we are able to leverage the uncertainty due to the limited training data to further improve extrapolation capabilities. We apply our framework to severely under-resolved simulations of quasi-geostrophic flow and demonstrate its ability to accurately predict the anisotropic statistics over time horizons more than 30 times longer than the data seen in training.
- Abstract(参考訳): 乱流のようなカオスシステムは、科学や工学においてユビキタスである。
しかし、これらの研究は広い範囲のスケールと、しばしば完全には理解されていない他の物理学との強い相互作用のため、依然として課題である。
その結果、これらのシステムの正確なシミュレーションに必要な時空間分解能は、特に気候変動による極端な気象リスクの定量化のような長期的リスク評価の応用において、一般に計算不可能である。
データ駆動モデリングは、これらの障害を軽減するためのいくつかの約束を提供するが、高品質なシミュレーションの不足は、そのようなモデルを訓練するための限られたデータをもたらす。
したがって、計算、アルゴリズム、データ制限は一般的に、稀な極端な事象の確率が正確に捕捉されないことを意味する。
本研究では,カオスシステムの非侵襲的に解けない長期シミュレーションにニューラルネットワークモデルをトレーニングするための一般的な戦略を提案する。
提案手法は,高忠実度基準に向けた未解決シミュレーションにおいて,後処理補正演算子を訓練することに基づく。
これにより、基礎となるシステムのダイナミクスを直接学習することができ、統計が収束していない場合でも、非常に少ないトレーニングデータを使用することができます。
さらに、確率的ネットワークアーキテクチャを使用することで、限られたトレーニングデータによる不確実性を活用して、外挿機能をさらに改善できます。
本研究では, 準地球栄養流の過度に未解決なシミュレーションに適用し, トレーニングデータより30倍以上の時間地平線上での異方性統計を正確に予測できることを実証する。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - A non-intrusive machine learning framework for debiasing long-time
coarse resolution climate simulations and quantifying rare events statistics [0.0]
粗いモデルは、無視された「サブグリッド」スケールのために固有のバイアスに悩まされる。
ニューラルネット(NN)補正演算子を用いて,非侵襲的に粗大分解能気候予測を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T17:06:19Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - How to Learn and Generalize From Three Minutes of Data:
Physics-Constrained and Uncertainty-Aware Neural Stochastic Differential
Equations [24.278738290287293]
ニューラル微分方程式(SDE)を用いた制御力学モデル学習のためのフレームワークとアルゴリズムを提案する。
本研究では,従来の物理知識を帰納バイアスとして活用するためのドリフト項を構築し,学習モデルの予測の不確かさを距離認識した推定値を表す拡散項を設計する。
我々は、シミュレーションロボットシステムの実験を通じてこれらの能力を実証し、ヘキサコプターの飛行力学をモデル化し制御する。
論文 参考訳(メタデータ) (2023-06-10T02:33:34Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Simulation-Based Parallel Training [55.41644538483948]
このようなボトルネックを緩和するトレーニングフレームワークを設計するために、現在進行中の作業を紹介します。
トレーニングプロセスと並行してデータを生成する。
このバイアスをメモリバッファで軽減する戦略を提案する。
論文 参考訳(メタデータ) (2022-11-08T09:31:25Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
論文 参考訳(メタデータ) (2021-02-15T12:29:09Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
実効, 低次元, 粗粒度ダイナミクスモデル学習のための生成的枠組みを提案する。
粒子力学のマルチスケール物理系におけるその有効性と精度を実証する。
論文 参考訳(メタデータ) (2021-01-14T19:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。