論文の概要: SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
- arxiv url: http://arxiv.org/abs/2502.21120v1
- Date: Fri, 28 Feb 2025 14:55:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:45.129362
- Title: SEE: See Everything Every Time -- Adaptive Brightness Adjustment for Broad Light Range Images via Events
- Title(参考訳): SEE: あらゆるものを毎回見る - イベントを通しての広視野画像の適応的明度調整
- Authors: Yunfan Lu, Xiaogang Xu, Hao Lu, Yanlin Qian, Pengteng Li, Huizai Yao, Bin Yang, Junyi Li, Qianyi Cai, Weiyu Guo, Hui Xiong,
- Abstract要約: ダイナミックレンジが120億ドルを超えるイベントカメラは、従来の組込みカメラをはるかに上回っている。
本研究では,広い照明条件下で撮影した画像の明るさを拡張・適応的に調整するために,イベントをどのように利用するかという,新しい研究課題を提案する。
我々のフレームワークは、センサパターンを通して色を捉え、イベントを輝度辞書としてモデル化するためにクロスアテンションを使用し、画像のダイナミックレンジを調整し、広い光域表現を形成する。
- 参考スコア(独自算出の注目度): 53.79905461386883
- License:
- Abstract: Event cameras, with a high dynamic range exceeding $120dB$, significantly outperform traditional embedded cameras, robustly recording detailed changing information under various lighting conditions, including both low- and high-light situations. However, recent research on utilizing event data has primarily focused on low-light image enhancement, neglecting image enhancement and brightness adjustment across a broader range of lighting conditions, such as normal or high illumination. Based on this, we propose a novel research question: how to employ events to enhance and adaptively adjust the brightness of images captured under broad lighting conditions? To investigate this question, we first collected a new dataset, SEE-600K, consisting of 610,126 images and corresponding events across 202 scenarios, each featuring an average of four lighting conditions with over a 1000-fold variation in illumination. Subsequently, we propose a framework that effectively utilizes events to smoothly adjust image brightness through the use of prompts. Our framework captures color through sensor patterns, uses cross-attention to model events as a brightness dictionary, and adjusts the image's dynamic range to form a broad light-range representation (BLR), which is then decoded at the pixel level based on the brightness prompt. Experimental results demonstrate that our method not only performs well on the low-light enhancement dataset but also shows robust performance on broader light-range image enhancement using the SEE-600K dataset. Additionally, our approach enables pixel-level brightness adjustment, providing flexibility for post-processing and inspiring more imaging applications. The dataset and source code are publicly available at:https://github.com/yunfanLu/SEE.
- Abstract(参考訳): ダイナミックレンジが120dBドルを超えるイベントカメラは、従来の組込みカメラよりも大幅に優れており、低照度と高照度の両方を含む様々な照明条件下での詳細な変更情報をしっかりと記録している。
しかし,近年のイベントデータ活用の研究は,通常照明や高照度照明など幅広い照明条件において,低照度画像強調,画像強調,輝度調整に重点を置いている。
そこで本研究では,広い照明条件下で撮影した画像の明るさを向上・適応的に調整するために,イベントをどのように活用するかという,新たな研究課題を提案する。
この問題を調査するために、我々はまずSEE-600Kという新しいデータセットを収集した。SEE-600Kは610,126枚の画像と202のシナリオにまたがるイベントで構成されており、それぞれが平均4つの照明条件と1000倍以上の照明変化を特徴としている。
次に,イベントを効果的に活用し,プロンプトを用いて画像の明るさを円滑に調整するフレームワークを提案する。
我々のフレームワークはセンサパターンを通して色をキャプチャし、イベントを輝度辞書としてモデル化し、画像のダイナミックレンジを調整して広光域表現(BLR)を作成し、その輝度プロンプトに基づいて画素レベルでデコードする。
実験により,本手法は低照度強調データセットだけでなく,SEE-600Kデータセットを用いた広い照度画像強調に頑健な性能を示した。
さらに,本手法は画素レベルの輝度調整を可能にし,後処理の柔軟性を提供し,より多くの画像アプリケーションに刺激を与える。
データセットとソースコードは、https://github.com/yunfanLu/SEEで公開されている。
関連論文リスト
- DifFRelight: Diffusion-Based Facial Performance Relighting [12.909429637057343]
拡散に基づく画像から画像への変換を用いた,自由視点顔の表情のリライティングのための新しいフレームワークを提案する。
我々は、正確な照明制御のための拡散モデルを訓練し、フラットライト入力からの顔画像の高忠実度化を可能にする。
このモデルは、目の反射、地表面散乱、自影、半透明といった複雑な照明効果を正確に再現する。
論文 参考訳(メタデータ) (2024-10-10T17:56:44Z) - ALEN: A Dual-Approach for Uniform and Non-Uniform Low-Light Image Enhancement [10.957431540794836]
不適切な照明は、情報損失や画質の低下を招き、監視などの様々な応用に影響を及ぼす可能性がある。
現在のエンハンスメント技術は、しばしば特定のデータセットを使用して低照度画像を強化するが、様々な現実世界の条件に適応する際の課題は残る。
アダプティブ・ライト・エンハンスメント・ネットワーク (ALEN) を導入し、その主なアプローチは、ローカル照明とグローバル照明の強化が必要であるかどうかを決定するための分類機構を使用することである。
論文 参考訳(メタデータ) (2024-07-29T05:19:23Z) - From Sim-to-Real: Toward General Event-based Low-light Frame Interpolation with Per-scene Optimization [29.197409507402465]
低照度条件に適したシーンごとの最適化手法を提案する。
その結果,低照度環境における最先端性能が示された。
論文 参考訳(メタデータ) (2024-06-12T11:15:59Z) - Zero-Reference Low-Light Enhancement via Physical Quadruple Priors [58.77377454210244]
本稿では,標準光画像のみをトレーニング可能な,ゼロ参照低光強調フレームワークを提案する。
このフレームワークは、画像にさかのぼる照明不変性を復元し、自動的に低照度化を実現します。
論文 参考訳(メタデータ) (2024-03-19T17:36:28Z) - A Non-Uniform Low-Light Image Enhancement Method with Multi-Scale
Attention Transformer and Luminance Consistency Loss [11.585269110131659]
低照度画像強調は、薄暗い環境で収集された画像の知覚を改善することを目的としている。
既存の方法では、識別された輝度情報を適応的に抽出することができず、露光過多や露光過多を容易に引き起こすことができる。
MSATrというマルチスケールアテンション変換器を提案し,光バランスの局所的・グローバル的特徴を十分に抽出し,視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-12-27T10:07:11Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
自然色を維持しながら低照度画像を強調することは、カメラ処理のバリエーションによって難しい問題である。
そこで我々はDimmaを提案する。Dimmaは、画像対の小さなセットを利用して、任意のカメラと整合する半教師付きアプローチである。
そこで我々は,照明の違いに基づいて,シーンの歪み色を生成する畳み込み混合密度ネットワークを導入することで実現した。
論文 参考訳(メタデータ) (2023-10-14T17:59:46Z) - Diving into Darkness: A Dual-Modulated Framework for High-Fidelity
Super-Resolution in Ultra-Dark Environments [51.58771256128329]
本稿では,低照度超解像課題の性質を深く理解しようとする,特殊二変調学習フレームワークを提案する。
Illuminance-Semantic Dual Modulation (ISDM) コンポーネントを開発した。
包括的実験は、我々のアプローチが多様で挑戦的な超低照度条件に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-09-11T06:55:32Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
低照度画像強調(LLIE)の課題を考察し,4K解像度と8K解像度の画像からなる大規模データベースを導入する。
我々は、系統的なベンチマーク研究を行い、現在のLLIEアルゴリズムと比較する。
第2のコントリビューションとして,変換器をベースとした低照度化手法であるLLFormerを紹介する。
論文 参考訳(メタデータ) (2022-12-22T09:05:07Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。