論文の概要: Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
- arxiv url: http://arxiv.org/abs/2502.21123v3
- Date: Fri, 21 Mar 2025 14:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:09.986815
- Title: Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
- Title(参考訳): 信頼できるMLとファンデーションモデルにおける複数の目標の理解とバランスの鍵は因果性にある
- Authors: Ruta Binkyte, Ivaxi Sheth, Zhijing Jin, Mohammad Havaei, Bernhard Schölkopf, Mario Fritz,
- Abstract要約: 本稿では,機械学習に因果的手法を取り入れて,信頼性の高いMLの主要な原則間のトレードオフをナビゲートすることを提唱する。
我々は、信頼できるMLと基礎モデルの両方において、複数の競合する目標のバランスをとるためには、因果的アプローチが不可欠であると主張する。
- 参考スコア(独自算出の注目度): 91.24296813969003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring trustworthiness in machine learning (ML) systems is crucial as they become increasingly embedded in high-stakes domains. This paper advocates for integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML, including fairness, privacy, robustness, accuracy, and explainability. While these objectives should ideally be satisfied simultaneously, they are often addressed in isolation, leading to conflicts and suboptimal solutions. Drawing on existing applications of causality in ML that successfully align goals such as fairness and accuracy or privacy and robustness, this paper argues that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models. Beyond highlighting these trade-offs, we examine how causality can be practically integrated into ML and foundation models, offering solutions to enhance their reliability and interpretability. Finally, we discuss the challenges, limitations, and opportunities in adopting causal frameworks, paving the way for more accountable and ethically sound AI systems.
- Abstract(参考訳): 機械学習(ML)システムにおける信頼性の確保は、ハイテイクなドメインにますます組み込まれているため、極めて重要である。
本稿では,機械学習に因果的手法を統合することで,公正性,プライバシー,堅牢性,正確性,説明可能性など,信頼性の高いMLの主要な原則間のトレードオフをナビゲートすることを提唱する。
これらの目的は理想的には同時に満たされるべきであるが、しばしば孤立して対処され、対立や準最適解につながる。
本稿では,MLにおける因果関係の既存の応用を,公正性や正確性,プライバシ,ロバスト性といった目標の整合性を図った上で,信頼性の高いMLとファンデーションモデルの両方において,競合する複数の目標のバランスをとる上で,因果的アプローチが不可欠であることを論じる。
これらのトレードオフを強調することに加えて、どのように因果関係をMLや基礎モデルに統合し、信頼性と解釈可能性を高めるソリューションを提供するかを検討する。
最後に、因果的フレームワークを採用する際の課題、制限、機会について議論し、より説明責任と倫理的に健全なAIシステムへの道を開く。
関連論文リスト
- FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments [0.0]
本稿では,分散化された動的環境における信頼性を確保するために,多モーダル推論によるフェデレーション学習を統一するフレームワークを提案する。
このアプローチはFedMM-Xと呼ばれ、クロスモーダル整合性チェック、クライアントレベルの解釈可能性メカニズム、動的信頼校正を利用する。
我々の発見は、現実の環境で堅牢で解釈可能で社会的に責任を負うAIシステムを開発するための道を開いた。
論文 参考訳(メタデータ) (2025-03-25T11:28:21Z) - REVAL: A Comprehension Evaluation on Reliability and Values of Large Vision-Language Models [59.445672459851274]
REVALは、Large Vision-Language Modelsの textbfREliability と textbfVALue を評価するために設計された包括的なベンチマークである。
REVALには144K以上の画像テキストビジュアル質問回答(VQA)サンプルが含まれており、信頼性と価値の2つの主要なセクションで構成されている。
主流のオープンソースLVLMや,GPT-4oやGemini-1.5-Proといった著名なクローズドソースモデルを含む26のモデルを評価した。
論文 参考訳(メタデータ) (2025-03-20T07:54:35Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
大きな言語モデル(LLM)は、不一致の自己認識のためにしばしば幻覚する。
既存のアプローチは、不確実性推定やクエリの拒否を通じて幻覚を緩和する。
高速かつ低速な推論システムを統合するための明示的知識境界モデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-04T03:16:02Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - BeHonest: Benchmarking Honesty in Large Language Models [23.192389530727713]
我々は、大規模言語モデルにおける誠実さを評価するために特別に設計された、先駆的なベンチマークであるBeHonestを紹介する。
BeHonest氏は、知識境界の認識、偽造の回避、応答の一貫性の3つの重要な側面を評価している。
以上の結果から,LSMの正直性には改善の余地がまだ残っていることが示唆された。
論文 参考訳(メタデータ) (2024-06-19T06:46:59Z) - Test-Time Fairness and Robustness in Large Language Models [17.758735680493917]
Frontier Large Language Models (LLM) は、社会的に差別的であるか、その入力の刺激的な特徴に敏感である。
既存のソリューションは、LLMに公正か堅牢かを指示し、モデルのバイアスに対する暗黙の理解に依存します。
暗黙的な指示とは異なり、我々のプロンプト戦略は、フロンティアLSMのバイアスを一貫して減少させることを示す。
論文 参考訳(メタデータ) (2024-06-11T20:05:15Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrustはMLLMの信頼性に関する最初の総合的で統一されたベンチマークである。
我々のベンチマークでは、マルチモーダルリスクとクロスモーダルインパクトの両方に対処する厳格な評価戦略を採用している。
21の近代MLLMによる大規模な実験は、これまで調査されなかった信頼性の問題とリスクを明らかにしている。
論文 参考訳(メタデータ) (2024-06-11T08:38:13Z) - The Impossibility of Fair LLMs [59.424918263776284]
大規模言語モデル(LLM)の時代において、公正なAIの必要性はますます明確になっている。
我々は、機械学習研究者が公正性を評価するために使った技術フレームワークについてレビューする。
我々は、特定のユースケースにおける公平性を達成するためのより現実的な目標のためのガイドラインを策定する。
論文 参考訳(メタデータ) (2024-05-28T04:36:15Z) - Securing Reliability: A Brief Overview on Enhancing In-Context Learning
for Foundation Models [10.889829033820433]
In-context Learning(ICL)パラダイムは成長するが、毒性、幻覚、相違、敵対的脆弱性、矛盾といった問題にも遭遇する。
ファンデーションモデル(FM)の信頼性と責任を保証することは、AIエコシステムの持続可能な開発に不可欠である。
論文 参考訳(メタデータ) (2024-02-27T16:44:09Z) - TrustLLM: Trustworthiness in Large Language Models [446.5640421311468]
本稿では,大規模言語モデル(LLM)における信頼度に関する総合的研究であるTrustLLMを紹介する。
まず、8つの異なる次元にまたがる信頼性の高いLCMの原則を提案する。
これらの原則に基づいて、真理性、安全性、公正性、堅牢性、プライバシ、機械倫理を含む6つの次元にわたるベンチマークを確立します。
論文 参考訳(メタデータ) (2024-01-10T22:07:21Z) - Robustness, Efficiency, or Privacy: Pick Two in Machine Learning [7.278033100480175]
本稿では,分散機械学習アーキテクチャにおけるプライバシとロバスト性の実現に伴うコストについて検討する。
従来のノイズ注入は、汚染された入力を隠蔽することで精度を損なうが、暗号手法は、非直線性のため、防毒と衝突する。
我々は、より弱い脅威モデルを考慮して、この妥協を効率よく解決することを目的とした今後の研究の方向性を概説する。
論文 参考訳(メタデータ) (2023-12-22T14:10:07Z) - Bridging the gap: Towards an Expanded Toolkit for AI-driven Decision-Making in the Public Sector [6.693502127460251]
AIによる意思決定システムは、刑事司法、社会福祉、金融詐欺検出、公衆衛生などの分野に適用される。
これらのシステムは、機械学習(ML)モデルと公共セクターの意思決定の複雑な現実を整合させるという課題に直面している。
本稿では,データ側における分散シフトやラベルバイアス,過去の意思決定の影響,モデル出力側における競合する目標や人道支援など,不一致が発生する可能性のある5つの重要な課題について検討する。
論文 参考訳(メタデータ) (2023-10-29T17:44:48Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。