論文の概要: An Algebraic Framework for Hierarchical Probabilistic Abstraction
- arxiv url: http://arxiv.org/abs/2502.21216v1
- Date: Fri, 28 Feb 2025 16:47:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:42:17.534475
- Title: An Algebraic Framework for Hierarchical Probabilistic Abstraction
- Title(参考訳): 階層的確率的抽象化のための代数的枠組み
- Authors: Nijesh Upreti, Vaishak Belle,
- Abstract要約: 本稿では,階層的抽象化のための測度理論基盤を拡張し,課題に対処することを目的とした階層的確率的抽象化フレームワークを提案する。
このアプローチは、低レベルの知覚データで高レベルの概念化をブリッジし、解釈可能性を高め、層解析を可能にする。
我々のフレームワークは、AIサブフィールド、特にシステム1とシステム2の考え方の整合性において、抽象分析のための堅牢な基盤を提供します。
- 参考スコア(独自算出の注目度): 5.455744338342196
- License:
- Abstract: Abstraction is essential for reducing the complexity of systems across diverse fields, yet designing effective abstraction methodology for probabilistic models is inherently challenging due to stochastic behaviors and uncertainties. Current approaches often distill detailed probabilistic data into higher-level summaries to support tractable and interpretable analyses, though they typically struggle to fully represent the relational and probabilistic hierarchies through single-layered abstractions. We introduce a hierarchical probabilistic abstraction framework aimed at addressing these challenges by extending a measure-theoretic foundation for hierarchical abstraction. The framework enables modular problem-solving via layered mappings, facilitating both detailed layer-specific analysis and a cohesive system-wide understanding. This approach bridges high-level conceptualization with low-level perceptual data, enhancing interpretability and allowing layered analysis. Our framework provides a robust foundation for abstraction analysis across AI subfields, particularly in aligning System 1 and System 2 thinking, thereby supporting the development of diverse abstraction methodologies.
- Abstract(参考訳): 抽象化は様々な分野にわたるシステムの複雑さを軽減するために不可欠であるが、確率的モデルの効果的な抽象化手法を設計することは、確率的挙動や不確実性のために本質的に困難である。
現在のアプローチでは、複雑な確率データを高レベルな要約に蒸留して、抽出可能な解析と解釈可能な解析をサポートするが、通常は1層抽象を通して、関係性および確率的階層を完全に表現するのに苦労する。
本稿では,階層的抽象化のための測度理論基盤を拡張することで,これらの課題に対処することを目的とした階層的確率的抽象化フレームワークを提案する。
このフレームワークは、レイヤマッピングによるモジュラー問題の解決を可能にし、詳細なレイヤ固有の分析と凝集性のあるシステム全体の理解の両方を容易にする。
このアプローチは、低レベルの知覚データで高レベルの概念化をブリッジし、解釈可能性を高め、層解析を可能にする。
我々のフレームワークは,AIサブフィールド間の抽象化解析,特にシステム1とシステム2の考え方の整合性において,堅牢な基盤を提供し,多様な抽象化手法の開発を支援する。
関連論文リスト
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
ベンチマークはさまざまなバイアス、アーティファクト、リークに悩まされている。
モデルは、調査の不十分な障害モードのため、信頼できない振る舞いをする可能性がある。
因果関係はこれらの課題を体系的に解決するための 理想的な枠組みを提供します
論文 参考訳(メタデータ) (2025-02-07T17:01:37Z) - Towards Symbolic XAI -- Explanation Through Human Understandable Logical Relationships Between Features [19.15360328688008]
本稿では,入力特徴間の論理的関係を表すシンボリッククエリに関連性を持つ,シンボリックXAIというフレームワークを提案する。
このフレームワークは、ユーザーによるカスタマイズと人間可読性の両方に柔軟性のある、モデルの意思決定プロセスを理解する。
論文 参考訳(メタデータ) (2024-08-30T10:52:18Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipperはモデルベースの強化学習フレームワークである。
これは、与えられたタスクをより小さく、より管理しやすいサブタスクに自動的に一般化する。
環境の関連部分には、スパースな意思決定と集中した抽象化を可能にする。
論文 参考訳(メタデータ) (2023-09-30T02:25:18Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Hierarchical State Abstraction Based on Structural Information
Principles [70.24495170921075]
本稿では、情報理論の観点から、新しい数学的構造情報原理に基づく状態抽象化フレームワーク、すなわちSISAを提案する。
SISAは、様々な表現学習目標と柔軟に統合され、パフォーマンスをさらに向上する一般的なフレームワークである。
論文 参考訳(メタデータ) (2023-04-24T11:06:52Z) - Finding Alignments Between Interpretable Causal Variables and
Distributed Neural Representations [62.65877150123775]
因果抽象化は、説明可能な人工知能のための有望な理論的枠組みである。
既存の因果抽象法では、高レベルモデルと低レベルモデルの間のアライメントをブルートフォースで探索する必要がある。
これらの制約を克服する分散アライメントサーチ(DAS)を提案する。
論文 参考訳(メタデータ) (2023-03-05T00:57:49Z) - Multi-Resolution Online Deterministic Annealing: A Hierarchical and
Progressive Learning Architecture [0.0]
本稿では,多解像度データ空間のプログレッシブパーティショニングに基づく汎用階層型学習アーキテクチャを提案する。
各最適化問題の解は、勾配のない近似更新を用いてオンラインで推定できることを示す。
教師なしおよび教師なしの学習問題に対して、漸近収束解析と実験結果を提供する。
論文 参考訳(メタデータ) (2022-12-15T23:21:49Z) - A Direct Approximation of AIXI Using Logical State Abstractions [6.570488724773507]
本稿では,強化学習エージェントに対するベイズ最適性の概念である AIXI と論理状態抽象化の実践的統合を提案する。
状態抽象化を形成するための機能の適切なサブセットを選択するという問題に対処する。
その後、抽象状態列上のコンテキストツリー重み付けの適切な一般化を用いて、厳密なベイズモデル学習が達成される。
論文 参考訳(メタデータ) (2022-10-13T11:30:56Z) - Abstract Interpretation for Generalized Heuristic Search in Model-Based
Planning [50.96320003643406]
ドメイン・ジェネラル・モデル・ベース・プランナーは、しばしば記号的世界モデルの緩和を通じて探索を構築することによって一般性を導出する。
抽象解釈がこれらの抽象化の統一フレームワークとして機能し、よりリッチな世界モデルに探索の範囲を広げる方法について説明する。
また、これらは学習と統合することができ、エージェントは抽象的な情報を通じて、新しい世界のモデルで計画を開始することができる。
論文 参考訳(メタデータ) (2022-08-05T00:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。