論文の概要: RuCCoD: Towards Automated ICD Coding in Russian
- arxiv url: http://arxiv.org/abs/2502.21263v1
- Date: Fri, 28 Feb 2025 17:40:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:33.741402
- Title: RuCCoD: Towards Automated ICD Coding in Russian
- Title(参考訳): RuCCoD:ロシアでICDの自動符号化を目指す
- Authors: Aleksandr Nesterov, Andrey Sakhovskiy, Ivan Sviridov, Airat Valiev, Vladimir Makharev, Petr Anokhin, Galina Zubkova, Elena Tutubalina,
- Abstract要約: 我々は1万以上のエンティティと1500以上のユニークなICDコードで注釈付けされたICD符号化のための新しいデータセットを提案する。
このデータセットは、BERT、LLaMA with LoRA、RAGなど、最先端モデルのベンチマークとして機能する。
本実験は, 自動予測符号によるトレーニングが, 医師による手作業による注記データと比較して, 精度を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 38.98810919082103
- License:
- Abstract: This study investigates the feasibility of automating clinical coding in Russian, a language with limited biomedical resources. We present a new dataset for ICD coding, which includes diagnosis fields from electronic health records (EHRs) annotated with over 10,000 entities and more than 1,500 unique ICD codes. This dataset serves as a benchmark for several state-of-the-art models, including BERT, LLaMA with LoRA, and RAG, with additional experiments examining transfer learning across domains (from PubMed abstracts to medical diagnosis) and terminologies (from UMLS concepts to ICD codes). We then apply the best-performing model to label an in-house EHR dataset containing patient histories from 2017 to 2021. Our experiments, conducted on a carefully curated test set, demonstrate that training with the automated predicted codes leads to a significant improvement in accuracy compared to manually annotated data from physicians. We believe our findings offer valuable insights into the potential for automating clinical coding in resource-limited languages like Russian, which could enhance clinical efficiency and data accuracy in these contexts.
- Abstract(参考訳): 本研究は, バイオメディカルリソースが限られているロシア語におけるクリニカルコーディングの自動化の実現可能性について検討した。
我々は,1万以上のエンティティと1500以上のユニークなICDコードで注釈付けされた電子健康記録(EHR)の診断フィールドを含む,ICD符号化のための新しいデータセットを提案する。
このデータセットは、BERT、LLaMA with LoRA、RAGなどいくつかの最先端モデルのベンチマークとして機能し、ドメイン間の移行学習(PubMedの抽象化から診断まで)と用語(UMLSの概念からICDコードまで)を検証している。
次に、2017年から2021年までの患者履歴を含む社内EHRデータセットのラベル付けに、最高のパフォーマンスモデルを適用した。
本実験は, 自動予測符号によるトレーニングが, 医師による手作業による注記データと比較して, 精度を大幅に向上することを示した。
この発見は、ロシア語のようなリソース制限言語における臨床コーディングの自動化の可能性についての貴重な洞察を与え、これらの文脈における臨床効率とデータの正確性を高めることができると信じている。
関連論文リスト
- MedCodER: A Generative AI Assistant for Medical Coding [3.7153274758003967]
我々は、自動医療コーディングのためのジェネレーティブAIフレームワークであるMedCodERを紹介する。
MedCodERは、ICD(International Classification of Diseases)コード予測において、マイクロF1スコアの0.60を達成している。
疾患診断,ICD符号,エビデンステキストを付加した医療記録を含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-09-18T19:36:33Z) - ClinLinker: Medical Entity Linking of Clinical Concept Mentions in Spanish [39.81302995670643]
本研究は、医療エンティティリンクのための2相パイプラインを用いた新しいアプローチであるClinLinkerを提示する。
SapBERTベースのバイエンコーダに基づいており、その後クロスエンコーダで再ランクされ、スペインの医療概念に合わせた対照的な学習戦略に従って訓練されている。
論文 参考訳(メタデータ) (2024-04-09T15:04:27Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
この研究は、この領域でツールやリソースを共有する際に直面する困難を浮き彫りにしている。
臨床文献のコーパスを12種類に分類した。
私たちは、ディープラーニングモデルと手動ルールの結果をマージして、ハイブリッドシステムを構築します。
論文 参考訳(メタデータ) (2023-03-23T17:17:46Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
国際疾患分類法 (ICD) は, 医療分野の請求システムにおいて有効かつ重要であることが示されている。
現在、ICDコードは手動で臨床メモに割り当てられており、多くのエラーを引き起こす可能性がある。
本稿では,文書のトークン間の相互依存を捉えるためにトランスフォーマーベースのアーキテクチャを適用し,コードワイド・アテンション・メカニズムを用いて文書全体のコード固有表現を学習する。
論文 参考訳(メタデータ) (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z) - Collaborative residual learners for automatic icd10 prediction using
prescribed medications [45.82374977939355]
本稿では,処方用データのみを用いたicd10符号の自動予測のための協調残差学習モデルを提案する。
平均精度0.71および0.57のマルチラベル分類精度、F1スコア0.57および0.38の0.73および0.44の精度を取得し、患者および外来データセットの主診断をそれぞれ予測します。
論文 参考訳(メタデータ) (2020-12-16T07:07:27Z) - Ensemble model for pre-discharge icd10 coding prediction [45.82374977939355]
正確なコード予測のための複数の臨床データソースを組み込んだアンサンブルモデルを提案する。
平均精度は0.73および0.58、F1スコアは0.56および0.35、患者および外来データセットの主診断予測では0.71および0.4のマルチラベル分類精度を得る。
論文 参考訳(メタデータ) (2020-12-16T07:02:56Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。