BAnG: Bidirectional Anchored Generation for Conditional RNA Design
- URL: http://arxiv.org/abs/2502.21274v1
- Date: Fri, 28 Feb 2025 17:51:00 GMT
- Title: BAnG: Bidirectional Anchored Generation for Conditional RNA Design
- Authors: Roman Klypa, Alberto Bietti, Sergei Grudinin,
- Abstract summary: RNA-BAnG is a deep learning-based model designed to generate RNA sequences for protein interactions without these requirements.<n>We first validate our method on generic synthetic tasks involving similar localized motifs to those appearing in RNAs.<n>We then evaluate our model on biological sequences, showing its effectiveness for conditional RNA sequence design given a binding protein.
- Score: 15.92155083519678
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Designing RNA molecules that interact with specific proteins is a critical challenge in experimental and computational biology. Existing computational approaches require a substantial amount of experimentally determined RNA sequences for each specific protein or a detailed knowledge of RNA structure, restricting their utility in practice. To address this limitation, we develop RNA-BAnG, a deep learning-based model designed to generate RNA sequences for protein interactions without these requirements. Central to our approach is a novel generative method, Bidirectional Anchored Generation (BAnG), which leverages the observation that protein-binding RNA sequences often contain functional binding motifs embedded within broader sequence contexts. We first validate our method on generic synthetic tasks involving similar localized motifs to those appearing in RNAs, demonstrating its benefits over existing generative approaches. We then evaluate our model on biological sequences, showing its effectiveness for conditional RNA sequence design given a binding protein.
Related papers
- Regulatory DNA sequence Design with Reinforcement Learning [56.20290878358356]
We propose a generative approach that leverages reinforcement learning to fine-tune a pre-trained autoregressive model.
We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types.
arXiv Detail & Related papers (2025-03-11T02:33:33Z) - Life-Code: Central Dogma Modeling with Multi-Omics Sequence Unification [53.488387420073536]
Life-Code is a comprehensive framework that spans different biological functions.<n>Life-Code achieves state-of-the-art performance on various tasks across three omics.
arXiv Detail & Related papers (2025-02-11T06:53:59Z) - Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
understanding and predicting RNA behavior is a challenge due to the complexity of RNA structures and interactions.
Current RNA models have yet to match the performance observed in the protein domain.
ChaRNABERT is able to reach state-of-the-art performance on several tasks in established benchmarks.
arXiv Detail & Related papers (2024-11-05T21:56:16Z) - RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We develop a universal RNA sequence generation model based on flow matching, namely RNACG.
RNACG can accommodate various conditional inputs and is portable, enabling users to customize the encoding network for conditional inputs.
RNACG exhibits extensive applicability in sequence generation and property prediction tasks.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).<n>First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.<n>Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.<n>Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlow is a flow matching model for protein-conditioned RNA sequence-structure design.
Its denoising network integrates an RNA inverse folding model and a pre-trained RosettaFold2NA network for generation of RNA sequences and structures.
arXiv Detail & Related papers (2024-05-29T05:10:25Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.