Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
- URL: http://arxiv.org/abs/2502.21286v1
- Date: Fri, 28 Feb 2025 18:06:03 GMT
- Title: Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
- Authors: Li Yang, Mirna El Rajab, Abdallah Shami, Sami Muhaidat,
- Abstract summary: Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management.<n>ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance operational efficiency, support intelligent decision-making, and ensure effective resource allocation.<n>The implementation of ZTNs is subject to security challenges that need to be resolved to achieve their full potential.
- Score: 20.030842817472347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Zero-Touch Networks (ZTNs) represent a state-of-the-art paradigm shift towards fully automated and intelligent network management, enabling the automation and intelligence required to manage the complexity, scale, and dynamic nature of next-generation (6G) networks. ZTNs leverage Artificial Intelligence (AI) and Machine Learning (ML) to enhance operational efficiency, support intelligent decision-making, and ensure effective resource allocation. However, the implementation of ZTNs is subject to security challenges that need to be resolved to achieve their full potential. In particular, two critical challenges arise: the need for human expertise in developing AI/ML-based security mechanisms, and the threat of adversarial attacks targeting AI/ML models. In this survey paper, we provide a comprehensive review of current security issues in ZTNs, emphasizing the need for advanced AI/ML-based security mechanisms that require minimal human intervention and protect AI/ML models themselves. Furthermore, we explore the potential of Automated ML (AutoML) technologies in developing robust security solutions for ZTNs. Through case studies, we illustrate practical approaches to securing ZTNs against both conventional and AI/ML-specific threats, including the development of autonomous intrusion detection systems and strategies to combat Adversarial ML (AML) attacks. The paper concludes with a discussion of the future research directions for the development of ZTN security approaches.
Related papers
- LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection [0.0]
Large Language Models (LLMs) for vulnerability detection presents unique challenges.
Previous attempts employing machine learning models for vulnerability detection have proven ineffective.
We propose a robust AI-driven approach focused on mitigating these limitations.
arXiv Detail & Related papers (2025-04-25T15:30:40Z) - Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks [39.08784216413478]
This paper proposes an automated security framework targeting Physical Layer Authentication and Cross-Layer Intrusion Detection Systems.<n>The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments.
arXiv Detail & Related papers (2025-02-28T01:16:11Z) - Machine Learning-Based Intrusion Detection and Prevention System for IIoT Smart Metering Networks: Challenges and Solutions [0.0]
This paper explores the challenges associated with securing IIoT-based smart metering networks.<n>It proposes a Machine Learning-based Intrusion Detection and Prevention System (IDPS) for safeguarding edge devices.
arXiv Detail & Related papers (2025-02-16T14:08:59Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics [70.93622520400385]
This paper systematically quantifies the robustness of VLA-based robotic systems.
We introduce an untargeted position-aware attack objective that leverages spatial foundations to destabilize robotic actions.
We also design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments.
arXiv Detail & Related papers (2024-11-18T01:52:20Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
generative AI, particularly large language models (LLMs), become increasingly integrated into production applications.
New attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems.
Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks.
This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
arXiv Detail & Related papers (2024-09-23T10:18:10Z) - Automated Cybersecurity Compliance and Threat Response Using AI, Blockchain & Smart Contracts [0.36832029288386137]
We present a novel framework that integrates artificial intelligence (AI), blockchain, and smart contracts.
We propose a system that automates the enforcement of security policies, reducing manual effort and potential human error.
arXiv Detail & Related papers (2024-09-12T20:38:14Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Review of Generative AI Methods in Cybersecurity [0.6990493129893112]
This paper provides a comprehensive overview of the current state-of-the-art deployments of Generative AI (GenAI)
It covers assaults, jailbreaking, and applications of prompt injection and reverse psychology.
It also provides the various applications of GenAI in cybercrimes, such as automated hacking, phishing emails, social engineering, reverse cryptography, creating attack payloads, and creating malware.
arXiv Detail & Related papers (2024-03-13T17:05:05Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
The Open Radio Access Network (O-RAN) is a new, open, adaptive, and intelligent RAN architecture.
In this paper, we present a systematic adversarial machine learning threat analysis for the O-RAN.
arXiv Detail & Related papers (2022-01-16T17:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.