LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection
- URL: http://arxiv.org/abs/2504.18423v1
- Date: Fri, 25 Apr 2025 15:30:40 GMT
- Title: LLMpatronous: Harnessing the Power of LLMs For Vulnerability Detection
- Authors: Rajesh Yarra,
- Abstract summary: Large Language Models (LLMs) for vulnerability detection presents unique challenges.<n>Previous attempts employing machine learning models for vulnerability detection have proven ineffective.<n>We propose a robust AI-driven approach focused on mitigating these limitations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the transformative impact of Artificial Intelligence (AI) across various sectors, cyber security continues to rely on traditional static and dynamic analysis tools, hampered by high false positive rates and superficial code comprehension. While generative AI offers promising automation capabilities for software development, leveraging Large Language Models (LLMs) for vulnerability detection presents unique challenges. This paper explores the potential and limitations of LLMs in identifying vulnerabilities, acknowledging inherent weaknesses such as hallucinations, limited context length, and knowledge cut-offs. Previous attempts employing machine learning models for vulnerability detection have proven ineffective due to limited real-world applicability, feature engineering challenges, lack of contextual understanding, and the complexities of training models to keep pace with the evolving threat landscape. Therefore, we propose a robust AI-driven approach focused on mitigating these limitations and ensuring the quality and reliability of LLM based vulnerability detection. Through innovative methodologies combining Retrieval-Augmented Generation (RAG) and Mixtureof-Agents (MoA), this research seeks to leverage the strengths of LLMs while addressing their weaknesses, ultimately paving the way for dependable and efficient AI-powered solutions in securing the ever-evolving software landscape.
Related papers
- Towards Explainable and Lightweight AI for Real-Time Cyber Threat Hunting in Edge Networks [0.0]
This study introduces an Explainable and Lightweight AI (ELAI) framework designed for real-time cyber threat detection in edge networks.
Our approach integrates interpretable machine learning algorithms with optimized lightweight deep learning techniques, ensuring both transparency and computational efficiency.
We evaluate ELAI using benchmark cybersecurity datasets, such as CICIDS and UNSW-NB15, assessing its performance across diverse cyberattack scenarios.
arXiv Detail & Related papers (2025-04-18T23:45:39Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.<n>Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - Bringing Order Amidst Chaos: On the Role of Artificial Intelligence in Secure Software Engineering [0.0]
The ever-evolving technological landscape offers both opportunities and threats, creating a dynamic space where chaos and order compete.<n>Secure software engineering (SSE) must continuously address vulnerabilities that endanger software systems.<n>This thesis seeks to bring order to the chaos in SSE by addressing domain-specific differences that impact AI accuracy.
arXiv Detail & Related papers (2025-01-09T11:38:58Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
This paper presents an innovative framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM)
Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research.
arXiv Detail & Related papers (2024-09-20T03:09:23Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - On the Vulnerability of LLM/VLM-Controlled Robotics [54.57914943017522]
We highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities.<n>Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems.
arXiv Detail & Related papers (2024-02-15T22:01:45Z) - LLbezpeky: Leveraging Large Language Models for Vulnerability Detection [10.330063887545398]
Large Language Models (LLMs) have shown tremendous potential in understanding semnatics in human as well as programming languages.
We focus on building an AI-driven workflow to assist developers in identifying and rectifying vulnerabilities.
arXiv Detail & Related papers (2024-01-02T16:14:30Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
arXiv Detail & Related papers (2021-06-09T05:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.