論文の概要: Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
- arxiv url: http://arxiv.org/abs/2502.21314v1
- Date: Fri, 28 Feb 2025 18:56:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:41:39.511509
- Title: Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
- Title(参考訳): Raccoon: 粗大なキュレーションビデオによる多段階拡散訓練
- Authors: Zhiyu Tan, Junyan Wang, Hao Yang, Luozheng Qin, Hesen Chen, Qiang Zhou, Hao Li,
- Abstract要約: CFC-VIDS-1Mは、体系的な粗いキュレーションパイプラインによって構築された高品質のビデオデータセットである。
我々は、空間的時間的注意機構を分離したトランスフォーマーベースのアーキテクチャであるRACCOONを開発した。
- 参考スコア(独自算出の注目度): 15.781862060265519
- License:
- Abstract: Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
- Abstract(参考訳): テキスト・ビデオ生成は拡散モデルの出現によって有望な進歩を示したが、既存のアプローチはデータセットの品質と計算資源によって制限されている。
これらの制約に対処するため,本論文ではデータキュレーションとモデル設計の両方を進化させる包括的アプローチを提案する。
CFC-VIDS-1Mは,体系的な粗いキュレーションパイプラインによって構築された高品質なビデオデータセットである。
パイプラインはまず複数の次元にわたるビデオの品質を評価し、続いて視覚言語モデルを活用してテキスト・ビデオのアライメントとセマンティック・リッチネスを高める。
そこで我々は,視覚的品質と時間的コヒーレンスに重点を置いて,空間的時間的注意機構を分離したトランスフォーマーベースのアーキテクチャであるRACCOONを開発した。
このモデルは、ビデオ生成の複雑さを効率的に扱うために設計された、プログレッシブな4段階戦略によって訓練される。
広汎な実験により、高品質なデータキュレーションと効率的なトレーニング戦略の統合アプローチが、計算効率を保ちながら、視覚的に魅力的かつ時間的に一貫性のあるビデオを生成することが実証された。
データセット、コード、モデルをリリースします。
関連論文リスト
- Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models [89.79067761383855]
Vchitect-2.0は、大規模テキスト・ビデオ生成のためにビデオ拡散モデルをスケールアップするために設計された並列トランスフォーマーアーキテクチャである。
新たなマルチモーダル拡散ブロックを導入することで,テキスト記述と生成されたビデオフレームの整合性を実現する。
メモリと計算のボトルネックを克服するために,メモリ効率のトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-14T21:53:11Z) - Optical-Flow Guided Prompt Optimization for Coherent Video Generation [51.430833518070145]
我々は,光フローによる映像生成プロセスをガイドするMotionPromptというフレームワークを提案する。
ランダムフレーム対に適用した訓練された識別器の勾配を用いて,逆サンプリングステップにおける学習可能なトークン埋め込みを最適化する。
提案手法により,生成したコンテンツの忠実さを損なうことなく,自然な動きのダイナミクスを忠実に反映した視覚的コヒーレントな映像シーケンスを生成することができる。
論文 参考訳(メタデータ) (2024-11-23T12:26:52Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
ダイナミックスビデオのモデリングのため、ビデオ事前トレーニングは難しい。
本稿では,ビデオ事前学習におけるこのような制限を,効率的なビデオ分解によって解決する。
筆者らのフレームワークは,13のマルチモーダルベンチマークにおいて,画像と映像のコンテントの理解と生成が可能であることを実証した。
論文 参考訳(メタデータ) (2024-02-05T16:30:49Z) - Inflation with Diffusion: Efficient Temporal Adaptation for
Text-to-Video Super-Resolution [19.748048455806305]
本稿では,効率的な拡散型テキスト・ビデオ・スーパーレゾリューション(SR)チューニング手法を提案する。
本稿では,我々の拡張アーキテクチャに基づく異なるチューニング手法について検討し,計算コストと超解像品質のトレードオフを報告する。
論文 参考訳(メタデータ) (2024-01-18T22:25:16Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
本稿では,長期的空間的および時間的依存関係に対処する新しいビデオ生成モデルを提案する。
提案手法は,3次元認識型生成フレームワークにインスパイアされた,明示的で単純化された3次元平面のハイブリッド表現を取り入れたものである。
我々のモデルは高精細度ビデオクリップを解像度256時間256$ピクセルで合成し、フレームレート30fpsで5ドル以上まで持続する。
論文 参考訳(メタデータ) (2024-01-11T16:48:44Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
本稿では,高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細・高精細映像・高精細映像・高精細・高精細・高精細・高精細・高精細・高精細
我々は,テキスト・ツー・イメージ・プレトレーニング,ビデオ・プレトレーニング,高品質ビデオファインタニングの3つの異なる段階を同定し,評価する。
論文 参考訳(メタデータ) (2023-11-25T22:28:38Z) - Pre-training Contextualized World Models with In-the-wild Videos for
Reinforcement Learning [54.67880602409801]
本稿では,視覚制御タスクの学習を効率的に行うために,Wild 動画を多用した事前学習型世界モデルの課題について検討する。
本稿では、コンテキストと動的モデリングを明確に分離したContextualized World Models(ContextWM)を紹介する。
実験により,ContextWMを内蔵したWildビデオ事前学習は,モデルベース強化学習のサンプル効率を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-05-29T14:29:12Z) - Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation [55.36617538438858]
本研究では,空間的知覚と時間的知覚の相互作用を強化する新しいアプローチを提案する。
我々はHD-VG-130Mという大規模かつオープンソースのビデオデータセットをキュレートする。
論文 参考訳(メタデータ) (2023-05-18T11:06:15Z) - Autoencoding Video Latents for Adversarial Video Generation [0.0]
AVLAEは2ストリームの遅延オートエンコーダであり、ビデオ配信は敵の訓練によって学習される。
提案手法は, 発生器の明示的な構造構成を伴わずとも, 動きや外見の符号を乱すことを学習できることを実証する。
論文 参考訳(メタデータ) (2022-01-18T11:42:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。