Evaluating Large Language Models on the Spanish Medical Intern Resident (MIR) Examination 2024/2025:A Comparative Analysis of Clinical Reasoning and Knowledge Application
- URL: http://arxiv.org/abs/2503.00025v2
- Date: Sun, 16 Mar 2025 21:05:53 GMT
- Title: Evaluating Large Language Models on the Spanish Medical Intern Resident (MIR) Examination 2024/2025:A Comparative Analysis of Clinical Reasoning and Knowledge Application
- Authors: Carlos Luengo Vera, Ignacio Ferro Picon, M. Teresa del Val Nunez, Jose Andres Gomez Gandia, Antonio de Lucas Ancillo, Victor Ramos Arroyo, Carlos Milan Figueredo,
- Abstract summary: This study presents a comparative evaluation of 22 large language models LLMs on the Spanish Medical Intern Resident MIR examinations for 2024 and 2025.<n>The MIR exam consists of 210 multiple choice questions some requiring image interpretation.<n>The results underscore the transformative potential of domain specific fine tuning and multimodal integration in advancing medical AI applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study presents a comparative evaluation of 22 large language models LLMs on the Spanish Medical Intern Resident MIR examinations for 2024 and 2025 with a focus on clinical reasoning domain specific expertise and multimodal processing capabilities The MIR exam consisting of 210 multiple choice questions some requiring image interpretation serves as a stringent benchmark for assessing both factual recall and complex clinical problem solving skills Our investigation encompasses general purpose models such as GPT4 Claude LLaMA and Gemini as well as specialized fine tuned systems like Miri Pro which leverages proprietary Spanish healthcare data to excel in medical contexts Recent market entries Deepseek and Grok have further enriched the evaluation landscape particularly for tasks that demand advanced visual and semantic analysis The findings indicate that while general purpose LLMs perform robustly overall fine tuned models consistently achieve superior accuracy especially in addressing nuanced domain specific challenges A modest performance decline observed between the two exam cycles appears attributable to the implementation of modified questions designed to mitigate reliance on memorization The results underscore the transformative potential of domain specific fine tuning and multimodal integration in advancing medical AI applications They also highlight critical implications for the future integration of LLMs into medical education training and clinical decision making emphasizing the importance of balancing automated reasoning with ethical and context aware judgment
Related papers
- Performance of Large Language Models in Supporting Medical Diagnosis and Treatment [0.0]
AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.
This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
arXiv Detail & Related papers (2025-04-14T16:53:59Z) - Conversation AI Dialog for Medicare powered by Finetuning and Retrieval Augmented Generation [0.0]
Large language models (LLMs) have shown impressive capabilities in natural language processing tasks, including dialogue generation.<n>This research aims to conduct a novel comparative analysis of two prominent techniques, fine-tuning with LoRA and the Retrieval-Augmented Generation framework.
arXiv Detail & Related papers (2025-02-04T11:50:40Z) - LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.<n>We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.<n>Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Polish Medical Exams: A new dataset for cross-lingual medical knowledge transfer assessment [0.865489625605814]
This study introduces a novel benchmark dataset based on Polish medical licensing and specialization exams.<n>It comprises over 24,000 exam questions, including a subset of parallel Polish-English corpora.<n>We evaluate state-of-the-art LLMs, including general-purpose, domain-specific, and Polish-specific models, and compare their performance against human medical students.
arXiv Detail & Related papers (2024-11-30T19:02:34Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - Are Large Language Models True Healthcare Jacks-of-All-Trades? Benchmarking Across Health Professions Beyond Physician Exams [32.77551245372691]
Existing benchmarks for evaluating Large Language Models (LLMs) in healthcare predominantly focus on medical doctors.
We introduce the Examinations for Medical Personnel in Chinese (EMPEC), a pioneering large-scale healthcare knowledge benchmark in traditional Chinese.
EMPEC consists of 157,803 exam questions across 124 subjects and 20 healthcare professions, including underrepresented occupations like Optometrists and Audiologists.
arXiv Detail & Related papers (2024-06-17T08:40:36Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
We introduce MedBench, a comprehensive benchmark for the Chinese medical domain.
This benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, and real-world clinic cases.
We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings.
arXiv Detail & Related papers (2023-12-20T07:01:49Z) - Large Language Models Leverage External Knowledge to Extend Clinical
Insight Beyond Language Boundaries [48.48630043740588]
Large Language Models (LLMs) such as ChatGPT and Med-PaLM have excelled in various medical question-answering tasks.
We develop a novel in-context learning framework to enhance their performance.
arXiv Detail & Related papers (2023-05-17T12:31:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.