Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
- URL: http://arxiv.org/abs/2504.10405v1
- Date: Mon, 14 Apr 2025 16:53:59 GMT
- Title: Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
- Authors: Diogo Sousa, Guilherme Barbosa, Catarina Rocha, Dulce Oliveira,
- Abstract summary: AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes.<n>This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
Related papers
- LLM-MedQA: Enhancing Medical Question Answering through Case Studies in Large Language Models [18.6994780408699]
Large Language Models (LLMs) face significant challenges in medical question answering.<n>We propose a novel approach incorporating similar case generation within a multi-agent medical question-answering system.<n>Our method capitalizes on the model's inherent medical knowledge and reasoning capabilities, eliminating the need for additional training data.
arXiv Detail & Related papers (2024-12-31T19:55:45Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - The Role of Language Models in Modern Healthcare: A Comprehensive Review [2.048226951354646]
The application of large language models (LLMs) in healthcare has gained significant attention.
This review examines the trajectory of language models from their early stages to the current state-of-the-art LLMs.
arXiv Detail & Related papers (2024-09-25T12:15:15Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - MedLM: Exploring Language Models for Medical Question Answering Systems [2.84801080855027]
Large Language Models (LLMs) with their advanced generative capabilities have shown promise in various NLP tasks.
This study aims to compare the performance of general and medical-specific distilled LMs for medical Q&A.
The findings will provide valuable insights into the suitability of different LMs for specific applications in the medical domain.
arXiv Detail & Related papers (2024-01-21T03:37:47Z) - Deciphering Diagnoses: How Large Language Models Explanations Influence
Clinical Decision Making [0.0]
Large Language Models (LLMs) are emerging as a promising tool to generate plain-text explanations for medical decisions.
This study explores the effectiveness and reliability of LLMs in generating explanations for diagnoses based on patient complaints.
arXiv Detail & Related papers (2023-10-03T00:08:23Z) - Leveraging Medical Knowledge Graphs Into Large Language Models for Diagnosis Prediction: Design and Application Study [6.10474409373543]
We propose an innovative approach for augmenting the proficiency of Large Language Models (LLMs) in automated diagnosis generation.<n>We derive the KG from the National Library of Medicine's Unified Medical Language System (UMLS), a robust repository of biomedical knowledge.<n>Our approach offers an explainable diagnostic pathway, edging us closer to the realization of AI-augmented diagnostic decision support systems.
arXiv Detail & Related papers (2023-08-28T06:05:18Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.