論文の概要: Protein Structure Tokenization: Benchmarking and New Recipe
- arxiv url: http://arxiv.org/abs/2503.00089v1
- Date: Fri, 28 Feb 2025 15:14:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:21:26.775666
- Title: Protein Structure Tokenization: Benchmarking and New Recipe
- Title(参考訳): タンパク質構造のトークン化:ベンチマークと新しいレシピ
- Authors: Xinyu Yuan, Zichen Wang, Marcus Collins, Huzefa Rangwala,
- Abstract要約: 我々はStructTokenBenchを紹介した。StructTokenBenchは、構造トークンの質と効率を包括的に評価するフレームワークである。
また、コードブック更新を強化し、コードブックのサイズと寸法を最適にバランスさせ、トークン化ツールの利用と品質を改善する戦略であるAminoAseedを開発します。
- 参考スコア(独自算出の注目度): 16.842453216446987
- License:
- Abstract: Recent years have witnessed a surge in the development of protein structural tokenization methods, which chunk protein 3D structures into discrete or continuous representations. Structure tokenization enables the direct application of powerful techniques like language modeling for protein structures, and large multimodal models to integrate structures with protein sequences and functional texts. Despite the progress, the capabilities and limitations of these methods remain poorly understood due to the lack of a unified evaluation framework. We first introduce StructTokenBench, a framework that comprehensively evaluates the quality and efficiency of structure tokenizers, focusing on fine-grained local substructures rather than global structures, as typical in existing benchmarks. Our evaluations reveal that no single model dominates all benchmarking perspectives. Observations of codebook under-utilization led us to develop AminoAseed, a simple yet effective strategy that enhances codebook gradient updates and optimally balances codebook size and dimension for improved tokenizer utilization and quality. Compared to the leading model ESM3, our method achieves an average of 6.31% performance improvement across 24 supervised tasks, with sensitivity and utilization rates increased by 12.83% and 124.03%, respectively.
- Abstract(参考訳): 近年、タンパク質の構造的トークン化法が発展し、タンパク質の3D構造が離散的あるいは連続的に表現されるようになるのを目撃している。
構造トークン化は、タンパク質構造のための言語モデリングや、タンパク質配列や機能的テキストと構造を統合するための大規模なマルチモーダルモデルといった強力な技術を直接適用することができる。
進歩にもかかわらず、これらの手法の能力と限界は、統一された評価フレームワークが欠如しているため、よく理解されていない。
まずStructTokenBenchを紹介した。これは、既存のベンチマークでよく見られるように、グローバルな構造ではなく、きめ細かな局所的なサブ構造に焦点を絞った、構造トークンの質と効率を包括的に評価するフレームワークである。
評価の結果,ベンチマークの観点では,どのモデルも支配的ではないことが明らかとなった。
AminoAseedは、コードブックの勾配の更新を強化し、コードブックのサイズと寸法を最適にバランスさせ、トークン化ツールの利用と品質を改善するためのシンプルで効果的な戦略です。
先行モデルESM3と比較して,提案手法は24タスクに対して平均6.31%の性能向上を実現し,感度と利用率はそれぞれ12.83%,124.03%向上した。
関連論文リスト
- Structure Language Models for Protein Conformation Generation [66.42864253026053]
伝統的な物理学に基づくシミュレーション手法は、しばしばサンプリング平衡整合に苦しむ。
深い生成モデルは、より効率的な代替としてタンパク質のコンホメーションを生成することを約束している。
本稿では,効率的なタンパク質コンホメーション生成のための新しいフレームワークとして構造言語モデリングを紹介する。
論文 参考訳(メタデータ) (2024-10-24T03:38:51Z) - ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
本稿では,タンパク質基盤モデルのための総合評価フレームワークであるProteinBenchを紹介する。
本研究のアプローチは, タンパク質ドメインにおける課題を包括的に包括するタスクの分類学的分類, (ii) 品質, 新規性, 多様性, 堅牢性, および (iii) 様々なユーザ目標から詳細な分析を行い, モデルパフォーマンスの全体的視点を提供する,4つの重要な側面にわたるパフォーマンスを評価するマルチメトリック評価アプローチからなる。
論文 参考訳(メタデータ) (2024-09-10T06:52:33Z) - PDB-Struct: A Comprehensive Benchmark for Structure-based Protein Design [19.324059406159325]
我々は、リフォールダビリティベースのメトリクスと安定性ベースのメトリクスの2つの新しい指標を紹介した。
ByProt、ProteinMPNN、ESM-IFはベンチマークで非常によく機能しますが、ESM-DesignとAF-Designは不足しています。
提案するベンチマークは,タンパク質設計手法の公平かつ包括的な評価方法である。
論文 参考訳(メタデータ) (2023-11-30T02:37:55Z) - Neural Embeddings for Protein Graphs [0.8258451067861933]
幾何学ベクトル空間にタンパク質グラフを埋め込む新しい枠組みを提案する。
タンパク質グラフ間の構造的距離を保存するエンコーダ関数を学習する。
本フレームワークは,タンパク質構造分類の課題において,顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-06-07T14:50:34Z) - CCPL: Cross-modal Contrastive Protein Learning [47.095862120116976]
我々は、新しい教師なしタンパク質構造表現事前学習法、クロスモーダルコントラスト型タンパク質学習(CCPL)を導入する。
CCPLは堅牢なタンパク質言語モデルを活用し、教師なしのコントラストアライメントを用いて構造学習を強化する。
さまざまなベンチマークでモデルを評価し,フレームワークの優位性を実証した。
論文 参考訳(メタデータ) (2023-03-19T08:19:10Z) - A Systematic Study of Joint Representation Learning on Protein Sequences
and Structures [38.94729758958265]
効果的なタンパク質表現の学習は、タンパク質機能の予測のような生物学の様々なタスクにおいて重要である。
近年, タンパク質言語モデル(PLM)に基づく配列表現学習法は, 配列ベースタスクでは優れているが, タンパク質構造に関わるタスクへの直接適応は依然として困難である。
本研究は、最先端のPLMと異なる構造エンコーダを統合することで、結合タンパク質表現学習の包括的研究を行う。
論文 参考訳(メタデータ) (2023-03-11T01:24:10Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
配列ベースタンパク質言語モデル(pLM)の汎用的手法であるLM-Designを提案する。
pLMに軽量な構造アダプターを埋め込んだ構造手術を行い,構造意識を付加した構造手術を行った。
実験の結果,我々の手法は最先端の手法よりも大きなマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
本研究では,データ駆動型生成ネットワークを用いたタンパク質構造最適化手法を提案する。
EBM-Foldアプローチは,従来のロゼッタ構造最適化ルーチンと比較して,高品質なデコイを効率よく生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:40:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。